Plan Check Comments

Douglas County

Community Development

1594 Esmeralda Ave
Minden, NV 89423

Permit Type: Commercial Permit

Project Description: Genoa Church Foundation Repair, structural only
Document Name: Structural Calcs SUB 2
Report Date: 03-29-2023

Application Number: DB23-0477

Site Address:
182 NIXON ST
Genoa, NV 89411

Reviewer Contact Information:

Reviewer Name	Reviewer Email	Reviewer Phone No.:
Tim Davis	tdavis@douglasnv.us	$775-782-6224$
Rebecca Spates	rspates@douglasnv.us	$775-782-6226$

General Comments

Corrections in the following table need to be applied before a permit can be issued

GENOA CHURCH FOUNDATION REPAIR

Calculation Package

February 28, 2023

moffatt \& nichol

DOUGLAS COUNTY
COMMUNITY DEVELOPMENT
BUILDING DIVISION
BUILDER AND OWNER
RESPONSIBLE FOR COMPLIANCE
WITH ALL APPLICABLE CODES
ALL WORK SUBJECT TO FIELD
INSPECTION APPROVAL

Document Verification

Client	Town of Genoa
Project name	Genoa Church Foundation Repair
Document title	Calculation Package
Status	60%
Date	February 28,2023
Project number	222911

Revision	Description	Issued by	Date	Checked
1	Add PE Seal	CW	$3 / 17 / 23$	GN

Produced by:
Moffatt \& Nichol
111 West Telegraph Street
Suite 204
Carson City, NV, 89703
775-305-1466
www.moffattnichol.com
\qquad

Project Description

History
The $40 \mathrm{ft} \times 20 \mathrm{ft}$ church chapel was rebuilt in 1910 after a fire. In 1979-1980 the bell tower, porch, new roof, new doors and a natural gas heating system were installed. In 1991-1992 the church was expanded with reception area, dressing rooms, restrooms and a wheelchair ramp.

Structural Issue
The chapel's $40 \mathrm{ft} \times 20 \mathrm{ft}$ wood frame structure is founded on wood posts and stone footings. The crawl space exterior has wood siding, or skirting, which is exposed to soil and standing water due to drainage issues. The exterior skirting is deteriorating.
Additionally, there is differential settlement across the structural foundation elements causing unlevel flooring. The settlement and impacts to the structure are most pronounced on the west wall of the chapel where deformation from the bottom of the wall to the top of wall.
Proposed Solutions

- analyze the existing structure for seismic, wind, snow, live and dead loads
- design replacement foundation including exterior concrete footer with concrete block; and interior posts with concrete footers

References

- International Building Code (IBC) 2021
- ASCE 7-22 Minimum Design Loads and Associated Criteria for Buildings and Other Structures
- ASCE 7 Online Hazard Tool
- American Concrete Institute (ACI) 318, Building Code Requirements for Structural Concrete
- National Design Specification for Wood (NDS) 2018

Assumptions

- Scope is limited to analysis and upgrade of the chapel foundation system only.

Calculation Notes

- Hand calculations are done in Mathcad and Excel, where input and results are carried from one application to the other. Notes are included in these Mathcad calculations where to go in the Excel calculations.
- The hand calculations are based on a rigid building frame and an equivalent lateral force procedure. For simplicity these are only applied to the chapel structure.
- The computer program Woodworks was used to original chapel and building addition. Woodworks was used to analyze for dead, wind and seismic loads and allows for both rigid and flexible analyses.
- The goal of using Woodworks was to derive foundation reactions only. The capacity of the existing walls, and roof structure was not part of the scope of work.

Project : Genoa Church Foundation ReplacementSubject : Design Calculations
Structure: Chapel
Originator : Cory Wilder
Checker: \qquad
\qquad

Seismic - Equivalent Lateral Force Procedure per ASCE 7

The equivalent lateral force procedure is used as an approximate way to evaluate impacts of seismic events on structures. Base Shear, V , is the product of Cs and W , where Cs is the seismic response coefficient. Ta is the approximate fundamental period of the structure, which is used to select Sa , the 5% damped design response acceleration from $M C E_{R}$ spectra.

Approximate Fundamental Period, Ta
ASCE 7 12.8.2

$$
\begin{aligned}
& C_{t}:=0.02 \quad x:=0.75 \\
& h_{\mathrm{n}}:=14.22 \quad \mathrm{ft} \\
& \mathrm{~T}_{\mathrm{a}}:=\mathrm{C}_{\mathrm{t}} \cdot \mathrm{~h}_{\mathrm{n}}{ }^{\mathrm{X}} \quad \mathrm{~T}_{\mathrm{a}}=0.146 \quad \text { seconds }
\end{aligned}
$$

Design Spectral Acceleration Parameter, Sa
ASCE 7 11.4.5.
$\mathrm{Sa}=$ Design spectral response acceleration parameter defined in Section 11.4.5.1 and determined for the period T defined in Section 12.8.2

Per ASCE 7 11.4.5.1, (1) Sa, shall be taken as $2 / 3$ of the multi-period 5%-damped $M C E_{R}$ (risk-targeted maximum considered earthquake) response spectrum from the USGS Seismic Design Geodatabase for the applicable site class; and (2)At each response period, T, less than 10 s and not equal to one of the discrete values of period, T , listed in Item 1 above, Sa , shall be determined by linear interpolation between values of Sa

$$
\begin{array}{ll}
\mathrm{S}_{\mathrm{a}}:=\frac{2}{3} \cdot\left[2.21-\left(0.15-\mathrm{T}_{\mathrm{a}}\right) \cdot \frac{(2.21-1.85)}{(0.15-0.10)}\right] & \begin{array}{l}
\text { Interpolation of Multi-Period } \mathrm{MCE}_{\mathrm{R}} \\
\text { Spectrum-2022 } \\
\text { Source:ASCE } 7 \text { Hazards Report }
\end{array} \\
\mathrm{S}_{\mathrm{a}}=1.456 \quad \mathrm{~g} &
\end{array}
$$

Per 12.8.1.1, Method 1 , where Equation(12.8-2) is used to calculate the siesmic response coefficient, and the period T is less than the period at which Sa is maximum, the maximum value of Sa shall be used.

For the Multi-Period $\mathrm{MCE}_{\mathrm{R}}$ spectrum the maximum Sa of 2.48 g occurs at a period of 0.30 seconds which is greater than Ta calculated above. Therefore $2 / 3$ of 2.48 g shall be used.
\qquad

$$
\mathrm{S}_{\mathrm{Ma}}:=\frac{2(2.48)}{3} \quad \mathrm{~S}_{\mathrm{a}}=1.653 \quad \mathrm{~g}
$$

Seismic Response Coefficient, Cs

ASCE 7 12.8-2
$\mathrm{R}=$ Response modification factor in Table 12.2-1; and le = Importance Factor determined in accordance with Section 11.5.1.

$$
\begin{array}{ll}
\mathrm{l}_{\mathrm{e}}:=1.00 & \text { per Table 1.5-2 for Risk Category II as defined in Table 1.5-1 } \\
\underset{\mathrm{N}}{\mathrm{R}}:=6.5 & \begin{array}{l}
\text { per Table 12.2-1, A.16. Light framed (wood) walls sheathed with } \\
\text { wood structural panels rated for shear resistance. }
\end{array} \\
\mathrm{C}_{\mathrm{S}}:=\frac{\mathrm{S}_{\mathrm{a}}}{\left(\frac{\mathrm{R}}{1_{\mathrm{e}}}\right)} & \mathrm{C}_{\mathrm{S}}=0.254 \mathrm{~g}
\end{array}
$$

Effective Seismic Weight, W
ASCE 7 12.7.2

$$
\mathrm{W}_{\mathrm{d}}:=34223 \cdot \mathrm{lbf}
$$

W = effictive seismic weight of structure. Dead load $+15 \%$ of uniform snow load for flat roofs, Pf. From load spreadsheet.
$\mathrm{W}_{\mathrm{S}}:=6251 \cdot \mathrm{lbf}$
Snow load assumed 15% of 45.1 psf, on flat projection of 42×22 feet. From load spreadsheet.

$$
\underset{\mathrm{W}}{\mathrm{~W}}:=\mathrm{W}_{\mathrm{d}}+\mathrm{W}_{\mathrm{s}} \quad \mathrm{~W}=40474 \cdot \mathrm{lbf}
$$

Base Shear, V

$$
\underset{\mathrm{W}}{\mathrm{~V}}:=\mathrm{C}_{\mathrm{s}} \cdot \mathrm{~W} \quad \mathrm{~V}=10295 \cdot \mathrm{lbf}
$$

Seismic Overtuning Moment, M_{OE}

$\mathrm{M}_{\mathrm{OE}}:=95472 \mathrm{ft} \cdot \mathrm{lbf} \quad$ See Loading Spreadsheet
Dead + 15\% Snow Righting Moment, Mr
$\mathrm{M}_{\mathrm{r}}:=404742 \mathrm{ft} \cdot \mathrm{lbf}$
$\mathrm{FS}:=\frac{\mathrm{M}_{\mathrm{r}}}{\mathrm{M}_{\mathrm{OE}}} \quad \mathrm{FS}=4.2 \quad \Delta$ - Globally OK for seismic overturning.

Project : Genoa Church Foundation ReplacementSubject : Design Calculations

Originator : Cory Wilder
Checker : \qquad

Sheet: 4 of 18
Date: 2/13/2023
Date : \qquad

Shear Wall Reactions

Assume end walls have capacity to gather shear load from overturning forces. This is conservative considering the claboard siding on exterior and interior surfaces.
Calculate reactions at corners assuming moment couple across width of end wall.

$$
\mathrm{R}_{\mathrm{E}}:=\frac{\frac{\mathrm{M}_{\mathrm{OE}}}{2}}{20 \mathrm{ft}} \quad \mathrm{R}_{\mathrm{E}}=2387 \cdot \mathrm{lbf}
$$

Reaction force does not account for countering dead load, which is conservative.

Snow Loads

Snow load of 45.1 psf. 20-year MRI Value from ASCE 7. See BOD. Flat projection of 42×22 feet to account for eves.

$$
\begin{array}{ll}
\mathrm{W}_{\mathrm{s}}:=45.1 \cdot \mathrm{psf} \cdot 42 \mathrm{ft} \cdot 22 \mathrm{ft} & \mathrm{~W}_{\mathrm{s}}=41672 \cdot \mathrm{lbf} \\
\mathrm{~L}_{\mathrm{p}}:=(20 \mathrm{ft}+40 \mathrm{ft}) \cdot 2 & \mathrm{~L}_{\mathrm{p}}=120 \cdot \mathrm{ft} \\
\mathrm{~W}_{\mathrm{sp}}:=\frac{\mathrm{W}_{\mathrm{s}}}{\mathrm{~L}_{\mathrm{p}}} & \mathrm{~W}_{\mathrm{sp}}=347.27 \cdot \frac{\mathrm{lbf}}{\mathrm{ft}}
\end{array}
$$

Wind Loads

Wind Speed: Minimum 120 MPH V ult' - Exposure C, Risk Category II per Douglas County
Wind analysis per ASCE 7-22, Chapters 26 and 27 (Directional Procedure)

$\mathrm{V}_{\mathrm{ult}}:=120$	From Douglas County. This is a conservative wind speed given the setting of the church which is surrounded by trees and other buildings. However it's location does not meet the criteria for Exposure B.
$\mathrm{K}_{\mathrm{zt}}:=1.0$	No additional topographic effect due to hills, ridges, etc. Per ASCE 26.8
$\mathrm{~K}_{\mathrm{e}}:=0.86-(.03 \cdot .825)$	Elevation of church is 4825 feet. Value interpolated from Table 26.9-1 using delta between Ke values and 82.5% of elevation range
$\mathrm{K}_{\mathrm{e}}=0.835$	For vertical wall segments less than 15 ft high. From Table 26.10-1
$\mathrm{K}_{\mathrm{Z}}:=0.85$	For vertical roof projections at mean roof height of approximately 14.2 feet. See load calc spreadsheet. From Table 26.10-1
$\mathrm{K}_{\mathrm{h}}:=0.85$	For bell tower which is appromately 27 feet high. From Table 26.10-1

\qquad

$$
\begin{array}{ll}
\mathrm{q}_{\mathrm{Zwall}}:=0.00256 \cdot \mathrm{~K}_{\mathrm{z}} \cdot \mathrm{~K}_{\mathrm{zt}} \cdot \mathrm{~K}_{\mathrm{e}} \cdot \mathrm{~V}_{\mathrm{ult}}^{2} & \mathrm{q}_{\mathrm{Zwall}}=26.172 \\
\frac{\mathrm{lbf}}{\mathrm{ft}^{2}} \\
\mathrm{q}_{\text {hroof }}:=0.00256 \cdot \mathrm{~K}_{\mathrm{h}} \cdot \mathrm{~K}_{\mathrm{zt}} \mathrm{~K}_{\mathrm{e}} \cdot \mathrm{~V}_{\mathrm{ult}}^{2} & \mathrm{q}_{\text {hroof }}=26.172 \\
\mathrm{q}_{\text {hbell }}:=0.00256 \cdot \mathrm{~K}_{\mathrm{hbell}} \cdot \mathrm{~K}_{\mathrm{zt}} \cdot \mathrm{~K}_{\mathrm{e}} \cdot \mathrm{~V}_{\mathrm{ult}}^{2} & \mathrm{q}_{\text {hbell }}=29.559
\end{array}
$$

Wind Loads on Buildings: Main Force Resisting System (Directional Procedure)

$$
\begin{array}{ll}
\mathrm{G}_{\mathrm{f}}:=0.85 & \text { Gust effect factor for rigid buildings per 26.11.1 } \\
\mathrm{K}_{\mathrm{d}}:=0.85 & \text { Wind Directionality Factor for main building per Table 26.6-1 } \\
\mathrm{K}_{\mathrm{dbell}}:=0.90 & \text { Wind Directionality Factor for square bell tower per Table } \\
& \begin{array}{ll}
26.6-1
\end{array} \\
\mathrm{GC}_{\mathrm{pi}}:=0.18 \quad \text { +/- } & \begin{array}{l}
\text { Internal pressure coefficient for partially open buildings per Table } \\
\\
\\
\\
\\
\\
\\
\\
\\
\text { the more conservative pesesult when comative, whichever produces } \\
\text { loads. }
\end{array}
\end{array}
$$

External pressure coefficients, Cp , for the windward and leeward sides of the building account for positive and negative pressures. The figure below assumes wind from the right which puts positive pressure against the wall, roof and bell tower; and negative pressures on the opposite side of the building. Figure is copied from the loading spreadsheet.

Project: Genoa Church Foundation ReplacementSubject : Design Calculations
\qquad
Sheet: 6 of 18
\qquad

External pressure coefficients, Cp, for partially open building. See Table 27.3-1.
Roof pitch $=8: 12$, or $\theta=33.7 \mathrm{deg}$

$$
\begin{array}{ll}
\mathrm{C}_{\mathrm{pww}}:=0.8 & \begin{array}{l}
\text { Cp for the windward vertical wall. Assume rectangular vs parabolic } \\
\text { distribution. }
\end{array} \\
\mathrm{C}_{\mathrm{pwr}}:=0.3 & \begin{array}{l}
\text { Cp for the windward roof }
\end{array} \\
\mathrm{C}_{\mathrm{plr}}:=-0.6 & \text { Cp for the leeward roof } \\
\mathrm{C}_{\mathrm{plw}}:=-0.3 & \text { Cp for the leeward wall } \\
\mathrm{C}_{\mathrm{pbell}}:=0.8 & \text { Cp for the windward bell tower }
\end{array}
$$

Section 27.3 provides wind load formula for partially open buildings.

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{WW}}:=\mathrm{q}_{\mathrm{Zwall}} \cdot \mathrm{~K}_{\mathrm{d}} \cdot \mathrm{G}_{\mathrm{f}} \cdot \mathrm{C}_{\mathrm{pww}}+\mathrm{q}_{\mathrm{Zwall}} \cdot \mathrm{~K}_{\mathrm{d}} \cdot \mathrm{GC}_{\mathrm{pi}} \quad \mathrm{p}_{\mathrm{WW}}=19.13 \quad \frac{\mathrm{lbf}}{\mathrm{ft}^{2}} \quad \text { Windward wall } \\
& p_{w r}:=q_{\text {hroof }} \cdot K_{d} \cdot G_{f} \cdot C_{p w r}+q_{\text {hroof }} \cdot K_{d} \cdot \mathrm{GC}_{\mathrm{pi}} \quad p_{\mathrm{wr}}=9.68 \\
& \mathrm{p}_{\mathrm{lr}}:=\mathrm{q}_{\text {hroof }} \cdot \mathrm{K}_{\mathrm{d}} \cdot \mathrm{G}_{\mathrm{f}} \cdot \mathrm{C}_{\mathrm{plr}}-\mathrm{q}_{\text {hroof }} \cdot \mathrm{K}_{\mathrm{d}} \cdot \mathrm{GC}_{\mathrm{pi}} \\
& \mathrm{p}_{1 \mathrm{r}}=-15.35 \\
& \mathrm{p}_{\mathrm{lw}}:=\mathrm{q}_{\mathrm{zwall}} \cdot \mathrm{~K}_{\mathrm{d}} \cdot \mathrm{G}_{\mathrm{f}} \cdot \mathrm{C}_{\mathrm{plw}}-\mathrm{q}_{\mathrm{zwall}} \cdot \mathrm{~K}_{\mathrm{d}} \cdot \mathrm{GC}_{\mathrm{pi}} \\
& p_{1 \mathrm{~W}}=-9.68 \\
& \mathrm{p}_{\text {bell }}:=\mathrm{q}_{\mathrm{hbell}} \mathrm{~K}_{\text {dbell }} \cdot \mathrm{G}_{\mathrm{f}} \cdot \mathrm{C}_{\mathrm{pbell}} \\
& \begin{array}{ll}
p_{\text {bell }}=18.09 & \begin{array}{l}
\text { Windward wall of bell tower } \\
\text { Internal or leeward pressure }
\end{array}
\end{array} \\
& \text { not applied to mostly open } \\
& \text { bell tower. }
\end{aligned}
$$

Calculated wind loads exceed minimum design wind loads of $16 \mathrm{lb} / \mathrm{sf}$ and $8 \mathrm{lb} / \mathrm{sf}$ for wall and roof elements, respectively. Per section 27.1.5.

Project : Genoa Church Foundation ReplacementSubject : Design Calculations
\qquad
Sheet: 7 of 18
\qquad

Break roof pressures into vertical and horizontal components using roof pitch, 8:12, or 33.7 degree angle.

$$
\begin{array}{ll}
\mathrm{p}_{\mathrm{wrx}}:=\mathrm{p}_{\mathrm{wr}} \cdot \sin \left(33.7 \cdot \frac{3.14}{180}\right) & \mathrm{p}_{\mathrm{wrx}}=5.37 \\
\mathrm{p}_{\mathrm{wry}}:=\mathrm{p}_{\mathrm{wr}} \cdot \cos \left(33.7 \cdot \frac{3.14}{180}\right) & \mathrm{p}_{\mathrm{wry}}=8.05 \\
\mathrm{p}_{\mathrm{lrx}}:=\mathrm{p}_{\mathrm{lr}} \cdot \sin \left(33.7 \cdot \frac{3.14}{180}\right) & \mathrm{p}_{\text {lrx }}=-8.51 \\
\mathrm{p}_{\mathrm{lry}}:=\mathrm{p}_{\mathrm{lr}} \cdot \cos \left(33.7 \cdot \frac{3.14}{180}\right) & \mathrm{p}_{\text {lry }}=-12.77
\end{array}
$$

Go to load spreadsheet for application of wind loads to structure and overturning moment, shear, and reactions.

Live Loads

Live load for Assembly Area with Moveable Seats, Per ASCE7-22 Table 4.3-1
Live Load $=100 \mathrm{psf}$

Application

Areas

Exterior Foundation

Assuming a $0.5 \times L$ for exterior tributary area around perimeter. Where L is the length of floor joist from interior support and exterior foundation wall, or 5 feet. See AISC beam diagram for four equal spans with first and third spans loaded. Max shear at beam ends is $0.446 \times \mathrm{L}$.

Lext $=100 \mathrm{psf}$ * 0.5 * $5 \mathrm{ft}=250 \mathrm{lb} / \mathrm{ft}$ of exterior foundation
Interior Foundation
The interior floor frame is supported by posts on a 5^{\prime} by 5^{\prime}, or 25 SF tributary area.
Lint $=100 \mathrm{psf} * 25 \mathrm{sf}=2,500 \mathrm{lb}$
Go to load spreadsheet for application of live loads to structure.
\qquad

Load Combinations

Exterior

Foundation
Load combinations for strength design are provided in ASCE7-22, Chapter 2.

2.3 LOAD COMBINATIONS FOR STRENGTH DESIGN

2.3.1 Basic Combinations

1a. 1.4D
2a. $1.2 \mathrm{D}+1.6 \mathrm{~L}+$ (0.5 Lr or 0.3 S or 0.5 R)
3a. 1.2D + (1.6Lr or 1.0 S or 1.6 R$)+(\mathrm{L}$ or 0.5 W$)$
4a. 1.2D $+1.0(\mathrm{~W}$ or WT$)+\mathrm{L}+(0.5 \mathrm{Lr}$ or 0.3 S or 0.5 R$)$
5a. 0.9D + 1.0(W or WT)
2.3.6 BasicCombinationswithSeismicLoadEffects
6. $1.2 \mathrm{D}+\mathrm{Ev}+\mathrm{Eh}+\mathrm{L}+0.15 \mathrm{~S}$
7. $0.9 \mathrm{D}-\mathrm{Ev}+\mathrm{Eh}$

The following loads were evaluated for the chapel structure.

Load	Calculation Source	Note	
Dead Load, D	see Dead-Seismic-Snow tab		
Snow Load, S	see Dead-Seismic-Snow tab		
Seismic Load, E	see	Dead-Seismic-Snow tab	+/- (with
15\% snow load)			
Wind Load, W	see Wind tab	+/-	
Live Load, L	see Interior Dead-Live tab		

Load were derived for exterior wall foundations as distributed loads, and combined using the factors provided above.

Go load spreadsheet for individual wall loads and load combinations. Results are presented below.

	Load Factors and Distributed Loads					Load Combinations and Load					
	Dead	Live	Snow	Wind	Siesmic						
	285	250	347	235	119	Dead	Live	Snow	Wind	Siesmic	Total
Combination	D	L	S	W	E	D	L	S	W	E	(PLF)
1a	1.4					399	0	0	0	0	399
2a	1.2	1.6	0.3			342	400	104	0	0	846
$3 \mathrm{a}-1$	1.2	1	1			342	250	347	0	0	939
3a-2	1.2		1	0.5		342	0	347	117	0	807
4a	1.2	1	0.3			342	250	104	0	0	696
5a-1	0.9			1		257	0	0	235	0	491
$5 \mathrm{a}-2$	0.9			-1		257	0	0	-235	0	22
6	1.2	1	0.15		1	342	250	52	0	119	764
7-1	0.9				-1	257	0	0	0	-119	137
									**	Max	939
										Min	22
Close to minimum. Add anchors along perimeter of chapel footing. Dead load does not include stem wall or footing, so anchors will provide higher factor of safety.											
**	Add stem wall and footing for check of max soil pressure.										

Project: Genoa Church Foundation ReplacementSubject : Design Calculations Job No : 222911 Structure : Chapel

Originator : Cory Wilder
Checker: \qquad

Sheet: 9 of 18 Date : 2/13/2023
Date : \qquad

Interior Footing

Assuming that wind, siesmic and snow loads are carried by the exterior stem wall and footing. Interior posts and footings will carry live and tributary dead loads from floor and framing. Results for interior foundations are provide below from the Load spreadsheet.

	Load Factors and Distributed Loads				
	Dead	Live	Snow	Wind	Siesmic
	734	2500	0	0	0
	(Ib)	L	S	W	E
Combination	D	L			
1a	1.4				
2a	1.2	1.6	0.3		
$3 \mathrm{a}-1$	1.2	1	1		
$3 \mathrm{a}-2$	1.2		1	0.5	
4 a	1.2	1	0.3		
$5 \mathrm{a}-1$	0.9			1	
$5 \mathrm{a}-2$	0.9			-1	
6	1.2	1	0.15		1
$7-1$	0.9				-1

	Load Combinations and Load					
(lb)	Dead	Live	Snow	Wind	Siesmic	Total
	D	L	S	W	E	(lb)
	1028	0	0	0	0	1028
	881	4000	0	0	0	4881
	881	2500	0	0	0	3381
	881	0	0	0	0	881
	881	2500	0	0	0	3381
	661	0	0	0	0	661
	661	0	0	0	0	661
	881	2500	0	0	0	3381
	661	0	0	0	0	661

Max
Min

Project: Genoa Church Foundation ReplacementSubject : Design Calculations
Checker : \qquad

Sheet: 10 of 18 Date: 2/13/2023 Date : \qquad

Footing Sizing

Interior Post Footing

Interior post footings will carry $2,500 \mathrm{lb}$ of live load and 516 lb of dead load from combined flooring, framing and post materials. Assuming the post footing is 24 "x24"x10". See Loading spreadsheet for details about loads.

$$
\begin{array}{ll}
\mathrm{p}_{\text {postmax }}:=4881 \mathrm{lbf} & \\
\mathrm{~A}_{\text {postfoot }}:=2 \mathrm{ft} \cdot 2 \mathrm{ft} & \mathrm{~A}_{\text {postfoot }}=4 \cdot \mathrm{ft}^{2} \\
\mathrm{p}_{\text {postfoot }}:=\frac{\mathrm{p}_{\text {postmax }}}{A_{\text {postfoot }}} & \mathrm{p}_{\text {postfoot }}=1220 \cdot \mathrm{psf} \quad<1,500 . \mathrm{OK}
\end{array}
$$

Two Way Punching Shear Check
Reference ACl 318 -19, Section 22.6 .5 for two way shear strength without shear reinforcement.
$\lambda=1$ for normal wieght concrete per 19.2.4.
$\lambda s=1$ per 22.5.5.1.3
$\mathrm{f}_{\mathrm{c}}:=2500 \mathrm{psi}$
$\mathrm{fc}_{\text {check }}:=\left(\frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{psi}}\right)^{.5} \cdot \mathrm{psi} \quad \mathrm{fc}_{\text {check }}=50 \mathrm{psi}$
per 22.6.3.1 (fc) ${ }^{\wedge} .5$ cannot exceed 100 psiOK
$\mathrm{v}_{\mathrm{c} 2}:=4 \cdot\left(\frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{psi}}\right)^{.5} \cdot \mathrm{psi} \quad \mathrm{v}_{\mathrm{c} 2}=200 \mathrm{psi}$
$\mathrm{b}:=6$ in
$\mathrm{d}:=10 \mathrm{in}-3 \mathrm{in}$
$\mathrm{d}=7$ in
$\mathrm{b}_{\mathrm{o}}:=4 \cdot\left(\mathrm{~b}+\frac{\mathrm{d}}{2}\right) \quad \mathrm{b}_{\mathrm{o}}=38$ in
$\mathrm{V}_{\mathrm{c} 2}:=\mathrm{v}_{\mathrm{c} 2} \cdot \mathrm{~b}_{\mathrm{o}} \cdot \mathrm{d} \quad \mathrm{V}_{\mathrm{c} 2}=53200 \cdot \mathrm{lbf}$
Existing foundation posts are square rough cut 6"x6" timbers.

Assuming 3" min cover on footing rebar
22.6.4.1(a)
>> 4881 lb maximum factored load - OK
\qquad
One Way Direct Shear
$\mathrm{Q}_{\mathrm{u}}:=\frac{\mathrm{p}_{\text {postmax }}}{24 \operatorname{in} \cdot 24 \mathrm{in}} \quad \mathrm{Q}_{\mathrm{u}}=8.474 \mathrm{psi} \quad$ Footing pressure from max factored load
$\mathrm{b}_{\mathrm{w}}:=24 \mathrm{in}$
$\mathrm{b}_{\mathrm{p}}:=\frac{\left(\mathrm{b}_{\mathrm{w}}-6 \mathrm{in}\right)}{2}-\mathrm{d} \quad \mathrm{b}_{\mathrm{p}}=2$ in
Width of footing outside failure surface at d away from face of column
$\mathrm{V}_{\mathrm{c} 1}:=\frac{\left(\mathrm{Q}_{\mathrm{u}} \cdot \mathrm{b}_{\mathrm{p}} \cdot \mathrm{b}_{\mathrm{w}}\right)}{\mathrm{d} \cdot 24 \mathrm{in}}$
$\mathrm{V}_{\mathrm{c} 1}=2.421 \mathrm{psi}$
Shear stress resulting from footing pressure
$\mathrm{v}_{\mathrm{c} 1}:=2 \cdot\left(\frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{psi}}\right)^{.5} \cdot \mathrm{psi}$
$\mathrm{v}_{\mathrm{c} 1}=100 \mathrm{psi}$
Shear capacity. Simplified form of 22.5.5.1 (a)

$$
\mathrm{vc} 1 \gg \mathrm{Vc} 1-\mathrm{OK}
$$

Project : Genoa Church Foundation ReplacementSubject : Design Calculations
Checker: \qquad
\qquad

Exterior Footing

The exterior footing will support an 8-inch reinforced CMU stem wall. The dead loads for foundation materials must be added to the maximum distributed load.

Assume footing width of 18 inches and depth of 10 inches.
Assume maximum number of CMU block courses = 5 to ensure bottom of footing is below design frost depth.

$$
\begin{array}{ll}
\mathrm{w}_{\max }:=939 & \\
\mathrm{w}_{\mathrm{cmu}}:=\frac{5 \cdot 8 \cdot 8}{144} \cdot 150 & \mathrm{w}_{\mathrm{cmu}}=333.3 \\
\mathrm{w}_{\text {foot }}:=\frac{10 \cdot 18}{144} \cdot 150 & \mathrm{w}_{\text {foot }}=187.5
\end{array}
$$

$$
\mathrm{w}_{\text {footdes }}:=\mathrm{w}_{\max }+\mathrm{w}_{\mathrm{cmu}}+\mathrm{w}_{\text {foot }} \quad \mathrm{w}_{\text {footdes }}=1459.8 \quad \frac{\mathrm{lbf}}{\mathrm{ft}}
$$

Maximum allowable soil bearing pressure $=1,500$ psf per Douglas County, unless site specific evaluations are completed. No geotechnical information is available therefore the Douglas County criteria will be used.

$$
\mathrm{p}_{\text {soil }}:=\frac{\mathrm{w}_{\text {footdes }}}{\frac{18}{12}} \quad \mathrm{p}_{\text {soil }}=973.2 \quad \text { psf }<1,500 . \text { OK }
$$

Exterior Spread Footing Shear Check

$\mathrm{b}_{\text {wh }}:=18 \mathrm{in}$
$\underset{M P i}{b_{p}}:=\frac{\left(b_{w}-6 \text { in }\right)}{2}-d \quad b_{p}=-1$ in

Width of footing outside failure surface at d away from face of column.

No portion of footing is outside failure plane.

Check shear capacity of 1 foot length of footing versus maximum factored distributed load.

$$
\mathrm{V}_{\mathrm{cspread}}:=\mathrm{v}_{\mathrm{c} 1} \cdot \mathrm{~d} \quad \mathrm{~V}_{\mathrm{cspread}}=8400 \mathrm{plf} \gg 939 \text { plf factored load }-\mathrm{OK}
$$

Project : Genoa Church Foundation ReplacementSubject : Design Calculations Job No : 222911 Structure : Chapel
\qquad
\qquad

$$
\begin{array}{ll}
\mathrm{kip}_{\mathrm{KMN}}:=1000 \cdot \mathrm{lbf} & \mathrm{pcf}:=\frac{\mathrm{lbf}}{\mathrm{ft}^{3}} \\
\mathrm{ksi}:=\frac{\mathrm{kip}}{\mathrm{~m}^{2}} & \mathrm{plf}:=\frac{\mathrm{lbf}}{\mathrm{ft}}
\end{array} \quad \text { klf }:=\frac{\mathrm{kip}}{\mathrm{ft}}
$$

$$
\mathrm{psf}:=\frac{\mathrm{lbf}}{\mathrm{ft}^{2}}
$$

$$
\mathrm{ksf}:=\frac{\mathrm{kip}}{\mathrm{ft}^{2}}
$$

Reinforcing Bar diameter and area

$$
\mathrm{d}_{\mathrm{bar}}:=\left(\begin{array}{c}
0.375 \\
0.500 \\
0.625 \\
0.750 \\
0.875 \\
1.00 \\
1.128 \\
1.270 \\
1.410
\end{array}\right) \cdot \text { in }
$$

$$
\mathrm{A}_{\text {bar }}:=\left(\begin{array}{c}
0.11 \\
0.20 \\
0.31 \\
0.44 \\
0.60 \\
0.79 \\
1.00 \\
1.27 \\
1.56
\end{array}\right) \cdot \text { in }^{2}
$$

Project : Genoa Church Foundation ReplacementSubject : Design Calculations Job No : 222911 Structure: Chapel

Originator : Cory Wilder Checker :

Sheet : 14 of 18 Date : 2/13/2023 Date : \qquad

Project: Genoa Church Foundation ReplacementSubject : Design Calculations Job No : 222911 Structure : Chapel

Sheet : 15 of 18 Date: 2/13/2023
Date : \qquad

Project: Genoa Church Foundation ReplacementSubject: Design Calculations Job No : 222911 Structure : Chapel

Sheet : 16 of 18 Date: 2/13/2023
Date : \qquad

Project: Genoa Church Foundation ReplacementSubject: Design Calculations Job No : 222911 Structure: Chapel

Sheet : 17 of 18 Date : 2/13/2023
Date : \qquad

Project: Genoa Church Foundation ReplacementSubject : Design Calculations Job No : 222911 Structure: Chapel
\qquad

Sheet : 18 of 18 Date: 2/13/2023 Date : \qquad

Figure 2.4. Critical section of direct shear

DB23-0477

| moffatt \& nichol | CLIENT: Town of Genoa | JOB \#: 222911 Carson City | |
| :--- | :--- | :--- | :--- | :--- |
| | PROJECT: Church Foundation Repair | SHEET: 1 OF 1 | |
| | DESIGN FOR: Wind Load Calculations | DESIGNER: CAW | DATE: |
| | | CHECKER: | DATE: |

References/Comments

1) ASCE 7-22 Minimum Design Loads and Associated Criteria for Buildings and Other Structures
2) This spreadsheet references information developed within separate Mathcad calculations
3) Some results from this spreadsheet are copied back to Mathcad calculations

Building	H/L	W	Area	Moment Arm (A)	Wind Pressure (Note 1)	Wind Load	Overturni ng Moment	Dead Load Righting Moment	Shear	Wind Load Direction	Note
Component	ft	ft	sf	ft	lb/SF	lb	$\mathrm{ft}-\mathrm{lb}$	$\mathrm{ft}-\mathrm{lb}$	lb		
West Roof - x	13.5	42	567	15.3	-8.51	-4825	73986		4825	\longleftarrow	
West Roof - y	13.5	42	567	5	-12.77	-7241	36203			\uparrow	
East Roof - x	13.5	42	567	15.3	5.37	3045	46687		3045	\longleftarrow	
East Roof - y	13.5	42	567	15.0	8.05	4564	-68465			\downarrow	
West Wall	12	40	480	6	-9.68	-4646	27878		4646	\longleftarrow	Note 2
East Wall	12	40	480	6	19.13	9182	55094		9182	\longleftarrow	
Bell Tower	8	5	40	22.7	18.09	724	16402		724	\longleftarrow	
							187785	342232	22422		

Notes

1) See Mathcad Calcs for wind pressures
2) Windward wall pressure assumed linear vs parabolic. Conservative.

Wind Only Global Check (DL Righting / Wind Overturning Moment) 1.8 FS

| | Location | Location |
| ---: | ---: | ---: | :--- |
| Wind Global Reactions at A and B* | 9 | B |
| Wind Reactions at Corners** | 4695 | -9389 lb |
| Wind Distributed Load Along East \& West Walls*** | 235 | -4695 lb |

*Assumes a moment couple of 20 feet
**Assumes all loads go to shear wall ends
***Assumes all wind loads distributed to N/S wall footings Reactions do not account for countering dead loads.

Wind load application perASCE 7-22 Figure 27.3-1
Windward wall pressure assumed linear vs parabolic. Conservative.

References/Comments

1) ASCE 7-22 Minimum Design Loads and Associated Criteria for Buildings and Other Structures
2) This spreadsheet references information developed within separate Mathcad calculations
3) Some results from this spreadsheet are copied back to Mathcad calculations
4) Weights of Building Materials - Structural Design In Wood (Stalnaker), and McGraw Hill Access Engineering Web Page
5) Live load for Assembly Area with Moveable Seats, Per ASCE7-22 Table 4.3-1

(Used in Material Weight Calcs Above)

SS Wood Density 40 pcf
lb/ft
1.46 2.29
$6 \times 6 \quad 8.40$

Floor Framing Layout

1) Interior posts and footers are at 5 foot each way.
2) $6^{\prime \prime} \times 6^{\prime \prime}$ beams run north/south and rest on the interior posts and exterior foundation.
3) 2 " $\times 6^{\prime \prime}$ floor joists run east/west and rest on the $6^{\prime \prime} \times 6^{\prime \prime}$ beams and exterior foundation.

$\mathrm{moffat} \mathrm{\dagger} \&$	lLIENT: Town of Genoa	JOB \#: 222911 Carson City	
	PROJECT: Church Foundation Repair	SHEET: 1 OF 1	
	DESIGN FOR: Load Combinations	DESIGNER: CAW	DATE:
		CHECKER:	DATE:

References/Comments

1) ASCE 7-22 Minimum Design Loads and Associated Criteria for Buildings and Other Structures
2) This spreadsheet references information developed within separate Mathcad calculations
3) Some results from this spreadsheet are copied back to Mathcad calculations

Load Combination

Load combinations from ASCE7-22, Chapter 2
2.3 LOAD COMBINATIONS FOR STRENGTH DESIGN
2.3.1 Basic Combinations

1a. 1.4D
2a. 1.2D $+1.6 \mathrm{~L}+$ (0.5 Lr or 0.3 S or 0.5 R)
3a. 1.2D + (1.6Lr or 1.0 S or 1.6 R$)+(\mathrm{L}$ or 0.5 W$)$
4a. 1.2D $+1.0(\mathrm{~W}$ or WT$)+\mathrm{L}+(0.5 \mathrm{Lr}$ or 0.3 S or $0.5 R)$
5a. 0.9D + 1.0(W or WT)
2.3.6 BasicCombinationswithSeismicLoadEffects
6. $1.2 \mathrm{D}+\mathrm{Ev}+\mathrm{Eh}+\mathrm{L}+0.15 \mathrm{~S}$
7. $0.9 \mathrm{D}-\mathrm{Ev}+\mathrm{Eh}$

Applicable?	Loading
Yes	D=Dead load
No	Di =Weight of ice
Yes	E=Earthquake load
No	F = Load caused by fluids with well-defined pressures and maximum heights other than those caused by groundwater pressure
No	Fa =Flood load
No	H = Load due to lateral earth pressure (including lateral earth pressure from fixed or moving surcharge loads), ground water pressure, or pressure of bulk materials
Yes	L=Live load
No	Lr =Roof live load
No	N =Notional load for structural integrity, Section 1.4
No	R=Rain load
Yes	S=Snow load
No	T = Cumulative effect of self-straining forces and effects arising from contraction or expansion resulting from environmental or operational temperature changes, shrinkage, moisture changes, creep in component materials, movement caused by differential settlement, or combinations thereof
Yes	W =Wind load
No	Wi =Wind-on-ice, determined in accordance with Chapter 10
No	WT =Tornado load, determined in accordance with Chapter 32

Exterior Footing Assuming Distributed Loads (PLF)

Dead Load, D see Dead-Seismic-Snow tab
Snow Load, S see Dead-Seismic-Snow tab
Seismic Load, E see Dead-Seismic-Snow tab +/- (with 15% snow load)
Wind Load, W see Wind tab
+/-

	Load Factors and Distributed Loads					Load Combinations and Load					
	Dead	Live	Snow	Wind	Siesmic						
	285	250	347	235	119	Dead	Live	Snow	Wind	Siesmic	Total
Combination	D	L	S	W	E	D	L	S	W	E	(PLF)
1a	1.4					399	0	0	0	0	399
2a	1.2	1.6	0.3			342	400	104	0	0	846
3a-1	1.2	1	1			342	250	347	0	0	939
3a-2	1.2		1	0.5		342	0	347	117	0	807
4a	1.2	1	0.3			342	250	104	0	0	696
5a-1	0.9			1		257	0	0	235	0	491
5a-2	0.9			-1		257	0	0	-235	0	22
6	1.2	1	0.15		1	342	250	52	0	119	764
7-1	0.9				-1	257	0	0	0	-119	137
										Max	939
										Min	22
	se to m es not i fety. d stem	m. A stem d foo	chors or foot or che	perim so anch max	of chap will prov ressure.	load of					

Interior Footing Loads (lb)

Assuming that wind, siesmic and snow loads are carried by the exterior stem wall and footing. Interior posts and footings will carry live and tributary dead loads from floor and framing. See Interior Dead-Live tab for point loads.

> Dead Load, D see Dead-Seismic-Snow tab Live Load, L see Interior Dead-Live tab

Load Factors and Distributed Loads					
	Dead	Live	Snow	Wind	Siesmic
	734	2500	0	0	0
Combination	D	L	Sb)	W	E
1 a	1.4				
2 a	1.2	1.6	0.3		
$3 \mathrm{a}-1$	1.2	1	1		
$3 \mathrm{a}-2$	1.2		1	0.5	
4 a	1.2	1	0.3		
$5 \mathrm{a}-1$	0.9			1	
$5 \mathrm{a}-2$	0.9			-1	
6	1.2	1	0.15		1
$7-1$	0.9				-1

Load Combinations and Load

Dead	Live	Snow	Wind	Siesmic	Total
D	L	S	W	E	(lb)
1028	0	0	0	0	1028
881	4000	0	0	0	4881
881	2500	0	0	0	3381
881	0	0	0	0	881
881	2500	0	0	0	3381
661	0	0	0	0	661
661	0	0	0	0	661
881	2500	0	0	0	3381
661	0	0	0	0	661

Max
Min
681

WoodWorks® Shearwalls 2023
Genoa Church.wsw
Jan. 30, 2023 11:48:20

Project Information
DESIGN SETTINGS

SITE INFORMATION

Structural Data

STORY INFORMATION

	Story Elev [ft]	Floor/Ceiling Depth [in]	Wall Height [ft]	Length subject to down shrinkage [in]	Bolt length [in]
Ceiling	12.83	0.0		16.0	16.0
Level 1	0.83	10.0	12.00		
Foundation	0.00				

BLOCK and ROOF INFORMATION

BlockDimensions [ft]			Roof Panels			
			Face	Type	Slope	Overhang [ft]
Block 1	1 Story	N-S Ridge				
Location $\mathrm{X}, \mathrm{Y}=$	0.00	0.00	North	Gable	90.0	1.00
Extent $\mathrm{X}, \mathrm{Y}=$	20.00	40.00	South	Gable	90.0	1.00
Ridge X Location, Offset	10.00	0.00	East	Side	33.7	1.00
Ridge Elevation, Height	19.50	6.67	West	Side	33.7	1.00
Block 2	1 Story	E-W Ridge				
Location $\mathrm{X}, \mathrm{Y}=$	20.00	26.25	North	Side	20.0	1.00
Extent $\mathrm{X}, \mathrm{Y}=$	13.25	24.75	South	Side	20.0	1.00
Ridge Y Location, Offset	38.63	0.00	East	Gable	90.0	1.00
Ridge Elevation, Height	17.34	4.50	West	Gable	90.0	0.00
Block 3	1 Story	E-W Ridge				
Location $\mathrm{X}, \mathrm{Y}=$	4.00	40.25	North	Side	20.0	1.00
Extent $\mathrm{X}, \mathrm{Y}=$	16.00	10.75	South	Side	20.0	0.00
Ridge Y Location, Offset	45.63	0.00	East	Joined	90.0	0.00
Ridge Elevation, Height	14.79	1.96	West	Gable	90.0	1.00

SHEATHING MATERIALS by WALL GROUP

Grp	Surf	Sheathing							Fasteners						Apply Notes
		Material	Ratng	Thick in	$\begin{aligned} & \text { GU } \\ & \text { in } \end{aligned}$	Ply	Or	Gvtv lbs/in	Size	Type	RS	$\begin{aligned} & \text { Eg } \\ & \text { in } \end{aligned}$	Fd in	Bk	
1	Both	Lumber siding		3/4	-	-	Horz	25000	8d	Common	N	3	2	N	4,8
2	Ext	Structural sheath	24/0	5/16	-	3	Horz	25000	6d	Common	N	3	2	N	1
	Int	GSB 4x8		1/2	-	-	Horz	40000	11 ga	Galv	N	7	7	N	
3	Both	Lumber siding		3/4	-	-	Horz	25000	8d	Common	N	3	2	N	4,8

Legend:
Grp - Wall Design Group number, used to reference wall in other tables (created by program)
Surf - Exterior or interior surface when applied to exterior wall
Ratng - Span rating, see SDPWS Table C4.2.3C
Thick - Nominal panel thickness
GU - Gypsum underlay thickness
Ply - Number of plies (or layers) in construction of plywood sheets
Or - Orientation of longer dimension of sheathing panels or lumber planks. Dbl. = Double diagonal.
Gvtv - Shear stiffness in Ib/in. of depth from SDPWS Tables C4.2.3A-B
Type - Fastener type from SDPWS Tables 4.3A-D:
Common: common wire nail; Box: galvanized box nail; Casing: casing nail; Roof: galvanized roofing nail; Cooler: cooler nail; WBoard: wallboard nail; Screw: drywall screw; Gauge: nail measured by gauge; Galv: galvanized gauge nail; GWB: Gypsum wallboard blued nail
Size - From Tables 4.3A-D and Table A1; shown in Wall Input fastener dropdown
Common nails: $6 d=0.113 \times 2^{\prime \prime}, 8 d=0.131 \times 2.5 ", 10 d=0.148 \times 3$ ", $12 d=0.148 \times 3.5^{\prime \prime}$
Box or casing nails: $6 d=0.099 \times 2^{\prime \prime}, 8 d=0.113 \times 2.5^{\prime \prime}, 10 d=0.128 \times 3^{\prime \prime}, 12 d=0.126 \times 3.5^{\prime \prime}$
Gauge, roofing and GWB nails: $13 \mathrm{ga}=0.92^{\prime \prime} \times 1-1 / 8^{\prime \prime} ; 11 \mathrm{ga}=0.120^{\prime \prime} \times 1-1 / 8^{\prime \prime}$ (GWB nail for gypsum lath \& plaster), 1-1/4" (gyp. L\&P), 1-1/2"
(wire lath \& plaster, $1 / 2^{\prime \prime}$ fiberboard ,1/2" GWB), $1-3 / 4$ " (GSB, $5 / 8^{\prime \prime}$ GWB, 25/32" fiberboard, 2-ply GWB base), 2-3/8" (2-ply GWB face)
Cooler or wallboard nail: $5 d=.086^{\prime \prime} \times 1-5 / 8^{\prime \prime} ; 6 d=.092^{\prime \prime} \times 1-7 / 8^{\prime \prime} ; 8 d=.113^{\prime \prime} \times 2-3 / 8^{\prime \prime} ; 6 / 8 d=6 d$ base ply, $8 d$ face ply for 2-ply GWB.
Drywall screws: No. 6, 1-1/4" long.
RS - Ring-shank nails (non-shearwalls only), with increased withdrawal capacity as per NDS 12.2.3.2.
Eg - Panel edge fastener spacing. For lumber sheathing, no. of nails per board at shear wall boundary. For 2-ply GWB, spacing of all nails in face ply.
Fd - Field spacing interior to panels. For lumber sheathing, no. of nails per board at interior studs. For 2-ply GWB, spacing of all nails in face ply. $B k$ - Sheathing is nailed to blocking at all panel edges; $Y(e s)$ or $N(0)$
Apply Notes - Notes below table legend which apply to sheathing side

Notes:

1.Capacity has been reduced for framing specific gravity according to SDPWS Table 4.3A Note 3. A factor of 0.93 is applied for Hem.-Fir framing and 0.92 for S.-P.-F. For other materials with specific gravity G less than 0.5 , it is $\mathrm{G}+0.5$.
4. This material does not contribute to seismic shear resistance as it is not allowed in Seismic Design Category D according to SDPWS 4.3.7.9 for horizontal lumber sheathing.
8. Nails per board is for 1×6 and smaller boards.

FRAMING MATERIALS and STANDARD WALL by WALL GROUP

Wall Grp	Species	Grade	b in	d in	Spcg in	SG	E $\mathbf{p s i}^{\wedge} \mathbf{6}$	Fcp	Standard Wall
$\mathbf{1}$	S-P-F	Stud	1.50	5.50	16	0.42	1.20	425	
$\mathbf{2}$	S-P-F	Stud	1.50	5.50	16	0.42	1.20	425	
$\mathbf{3}$	S-P-F	Stud	1.50	5.50	16	0.42	1.20	425	

Legend:
Wall Grp - Wall Design Group
b - Stud breadth (thickness)
d - Stud depth (width)
Spcg - Maximum on-centre spacing of studs for design, actual spacing may be less.
SG - Specific gravity
E - Modulus of elasticity
Standard Wall - Standard wall designed as group.
Fcp-Compressive strength perpendicular to grain

Notes:

Check manufacture requirements for stud size, grade and specific gravity (G) for all shearwall hold-downs.
The following factors are applied to Fcp for compressive design and deformation under wall segment end studs : Bearing area factor Cb from NDS 3.10.4, under window openings.

SHEARLINE, WALL and OPENING DIMENSIONS

North-south Shearlines	Type	Wall Group	$\begin{gathered} \text { Location } \\ X[\mathrm{ft}] \\ \hline \end{gathered}$	Extent [ft]		Length [ft]	FHS [ft]	Aspect Ratio	Height [ft]	Studs	
				Start	End					S	N
Line 1											
Level 1											
Line 1		3	0.00	0.00	40.25	40.25	31.25	-	12.00	-	-
Wall 1-1	Seg	3	0.00	0.00	40.25	40.25	31.25	-	-	2	2
Segment 1		-	-	0.00	8.50	8.50	8.25	1.41	-	2	2
Opening 1		-	-	8.50	11.50	3.00	-	-	6.00	2	2
Segment 2		-	-	11.50	18.50	7.00	6.75	1.71	-	2	2
Opening 2		-	-	18.50	21.50	3.00	-	-	6.00	2	2
Segment 3		-	-	21.50	28.50	7.00	6.75	1.71	-	2	2
Opening 3		-	-	28.50	31.50	3.00	-	-	6.00	2	2
Segment 4		-	-	31.50	40.25	8.75	8.50	1.37	-	2	2
Line 2											
Level 1											
Line 2	Seg	2	4.00	0.00	51.00	51.00	10.50	-	12.00	-	-
Wall 2-1	Seg	2	4.00	40.25	51.00	10.75	10.50	1.12	-	2	2
Line 3											
Level 1											
Line 3		3,1	20.00	0.00	51.00	51.00	25.50	-	12.00	-	-
Wall 3-1	Seg	3	20.00	0.00	26.25	26.25	15.50	-	-	2	2
Segment 1		-	-	0.00	8.50	8.50	8.25	1.41	-	2	2
Opening 1		-	-	8.50	11.50	3.00	-	-	6.00	2	2
Segment 2		-	-	11.50	18.50	7.00	6.75	1.71	-	2	2
Opening 2		-	-	18.50	21.50	3.00	-	-	6.00	2	2
Segment 3		-	-	21.50	26.25	4.75	4.50	2.53	-	2	2
Wall 3-2	Seg	1	20.00	26.25	40.25	14.00	10.00	-	-	2	2
Segment 1		-	-	26.25	27.25	1.00	0.75	12.00	-	2	2
Opening 1		-	-	27.25	30.25	3.00	-	-	6.67	2	2
Segment 2		-	-	30.25	40.25	10.00	9.75	1.20	-	2	2
Line 4											
Level 1											
Line 4	Seg	2	33.25	26.25	51.00	24.75	24.50	-	12.00	-	-
Wall 4-1	Seg	2	33.25	26.25	51.00	24.75	24.50	0.48	-	2	2
East-west	Type	Wall	Location	Ext		Length	FHS	Aspect	Height		
Shearlines		Group	$\mathrm{Y}[\mathrm{ft}]$	Start	End	[ft]	[ft]	Ratio	[ft]	W	E
Line A											
Level 1											
Line A		1	0.00	0.00	20.00	20.00	14.00	-	12.00	-	-
Wall A-1	Seg	1	0.00	0.00	20.00	20.00	14.00	-	-	2	2
Segment 1		-	-	0.00	7.00	7.00	6.75	1.71	-	2	2
Opening 1		-	-	7.00	13.00	6.00	-	-	6.67	2	2
Segment 2		-	-	13.00	20.00	7.00	6.75	1.71	-	2	2
Line B											
Level 1											
Line B		2	26.25	0.00	33.25	33.25	0.00	-	12.00	-	-
Wall B-1	Seg	2	26.25	20.00	33.25	13.25	0.00	-	-	2	2
Segment 1		-	-	20.00	25.00	5.00	4.75	2.40	-	2	2
Opening 1		-	-	25.00	28.00	3.00	-	-	6.67	2	2
Segment 2		-	-	28.00	33.25	5.25	5.00	2.29	-	2	2
Line C											
Level 1											
Line C		3	40.25	0.00	33.25	33.25	16.00	-	12.00	-	-
Wall C-1	Seg	3	40.25	0.00	4.00	4.00	3.75	3.00	-	2	2
Wall C-2	Seg	3	40.25	4.00	20.00	16.00	15.75	0.75	-	2	2
Line D											
Level 1											
Line D	Seg	2	51.00	4.00	33.25	29.25	29.00	-	12.00		-
Wall D-1	Seg	2	51.00	4.00	33.25	29.25	29.00	0.41	-	2	2

Legend:
Type - Seg = Segmented, Prf = Perforated, FT = FTAO (force transfer around openings), NSW = non-shearwall
Location - Position in structure perpendicular to wall
Length - Shear line: Distance between exterior perpendicular walls defining the shear line extent
Wall, segment, or opening: End-to-end length of the element
FHS - Depending on element, shows different definitions of full-height sheathing length (FHS):
Shear lines with multiple walls, segmented walls, or FTAO walls: Total shear-resisting FHS
Individual wall segments or walls without openings: Distance between hold-downs beff
Perforated walls: Sum of factored segment lengths bi defined in SDPWS 4.3.5.6
Aspect Ratio - Ratio of wall height to segment length (h/b); for FTAO walls, the aspect ratio of the central pier
Wall Group - Wall design group defined in Sheathing and Framing Materials tables, where it shows associated Standard Wall

Segmented
"ㅉㅉㅆ Perforated
ㅍㅛㅔㅔ FTAO
\square Non-shearwall एया
अलॉWा
Aspeqbactor
-50ra
nge $=$ golecte
40^{\prime}
45^{\prime}

Elevation View
Shearline 3, at $\mathrm{X}=20 \mathrm{ft}$, Level 1.
Flexible Diaphragm Seismic Design

All shearwalls, Design group 0:
Exterior surface
3/4" horizontal lumber w/ 8 d common nails @ 3 or 2 per board Interior surface:
$3 / 4$ h horizontal
$3 / 44$ horizontai lumber w/ 8 d common nails @ 3 or 2 per board
Frame: S -P-F @ 16 ", unblocked
${ }^{25}$
22.5'
20^{\prime}

Factored
out-of-plape
fore Fp prif)
Anchorage: 29.2
Wall: 38.7
5^{\prime}
2.5^{\prime}

Factored Forces
Vertical
b. Hold-dow

Hold-down force (lbs)
Compression force
T - Tens. overturning (lbs)
C-Comp. overturning (llbs)
Ev-Vert. earthquake (lbs)
Ev-Vert. earth
D - Dead (lbs)
Strap/blocking force (lbs)
Factors: $\mathrm{T}, \mathrm{C}, \mathrm{Ev}=0.7 ; \mathrm{D}=0.6$ (tens), 1.0 (comp)
Combined: $\mathrm{T}-\mathrm{D}+\mathrm{Ev}$ (tens); $\mathrm{C}+\mathrm{D}+\mathrm{Ev}$ (comp) Unfactored Loads
Unfactored Lo
W. Dead

Horizontal
$\xrightarrow{\mathrm{Honin}}$ Line/wal force

- Line/wall force for collector design \vee (lbs) Diaphragm-to-collector force VIL (pIf)
Collector-to-sheathing force V/FHS Collector-to-sheathing force VIFHS (plf) - Drag strut force (lbs)

444 Wind uplift

Elevation View
Shearline 3, at $\mathrm{X}=20 \mathrm{ft}$, Level 1.
Flexible Diaphragm Wind Design.

AT ORIGINAL
CHAPEL NE
CORNER, NOW
CONNECTED TO
ADDITION.
INCLUDE STRAP CONNECTING CONNECTING
FLOOR JOIST TO POST.
3-2

Shearwalls, Design group 3*: 3-1, 3-2, Exterior surfacee:
$3 / 4$ horizontal
Exterior surface:
3/4" horizontal lumber w/ 8 d common nails @ 3 or 2 per board
Shear capacity: 70.0 plf
C\&C sheath. Ioad: $17.7 / 21.8$ psf; cap. 123.1 psf
Nail withdr. load 4.9 bs; cap. 57.9 lss Interior surface:
$3 / 4$ h horizantal lum Shear capacity 70.0 plf
Frame: S-P-F 9 16.
Design results are for the wall containing the critical segment. Critical Segment: $3-2,1$:
Critical Segment: $3-2,1$,
Design hear force: 80.7 plf
Combined capacity (added): 140.0 plf

UPLIFT FORCE.
INCLUDE STRAP AT OPENING STUD
FRAME, BOTH
SIDES. TYPICAL
ALL WINDOWS

Factored Force Vertical
 Vertical

Hold-down
Hold-down force (lbs)
Compression force (lbs)
T Tens. overturning (lbs)

- Tens. overturning (lbs)

U - Wind uplift (Ibs)
D - Dead (lbs)
Factors: (los) $\mathrm{H}=0$ Strap/blocking force (lbs)
Combined: $T-D+U$ (tens): $C+D-U$ (tens), 1.0 (comp).$~$
Unfactored Loads
Unfactored Lo
UW Dead

Horizontal
\rightarrow Line/wall force for --2 - Diaphall force for collector design \vee (lbs) Diaphragm-to-collector force V/L (pff)
Collector-to-sheathing force V/FHS (plf) Collector-to-sheathing force VIFHS (pif) Drag strut force (lbs)
= Strap/blockin
144 Wind uplift

All shearwalls, Design group 0:
Exterin horizontal lumber $w / 8 d$ common nails @ 3 or 2 per board
3/nter 3 Interior surfacae:
In
In $3 / 4{ }^{4}$ horizontal lumber w/ 8d common nails @ 3 or 2 per board
Frame: $\overline{S-P-F} @ 16 "$, unblocked

Elevation View Flexible Diaphrag Seismic Design

Factored Forces Vertical

Hold
Hod-down force (bs)
T- Tens. overturning (lbs)
C - Comp. overturning (lbs)
Ev-Vert. earthquake (lbs)
$=$
D-Dead (bs)
Combined: T-D +Ev (tens); $\mathrm{C}+\mathrm{D}+\mathrm{Ev}$ (comp)
Unfactored Loads
Wh Dead
144 Wind uplift

Elevation View
20^{\prime}

All shearwalls, Design group 1:
Exterior surface
$3 / 4$ " horizontal
Sh horizontal lumber w/8d common nails @ 3 or 2 per boar
C\&C sheath. load: $17.7 / 21.8 \mathrm{psf}$; cap. 123.1 psf
Nail withdr- load 4.9 lbs; cap. 0.0
Interior surface:
$3 / 44$ horizontal lumber w/ 8 d common nails @ 3 or 2 per board
Shear capacity: 70.0 plf
Frame $\mathrm{S}-\mathrm{S}-\mathrm{E}$ @ 16 .
Srame: S-P-F @ 16
Crite
Critical Segment: A-1,1:
Design shear force:
Design shear force: 237.9 plf
Combined capacity (added): 140.0 pl

JPLIFT FORCE INCLUDE STRAP AT OPENING STUD FRAME, BOTH SIDES

Factored Forces
Vertical
${ }^{5}$ Hold-do
Compression force (lbs)
Compression force (lbs)
T Tens. overturning (bs)
T - Tens. overturning (lbs)
C - Comp. overturning (lbs)
C - Comp. overturning
D-Dead (llis)
 Factors: $T, C, U=0.6 ; D=0.6$ (tens), 1.0 (comp) Combined: T-D +U (tens); C+D-U (comp)
Unfactored Loads WH Dead

141 Wind uplift

Elevation View
Shearline 1, at $\mathrm{X}=0 \mathrm{ft}$, Level 1.
Shearline 1, at $X=0 \mathrm{ft}$, Level 1.
Flexible Diaphragm Seismic Design.
22.5'

Factored Forces
Vertical
Hold-down force (bs)
Compression force (lbs)
T Compression force (lbs)
C - Comp. overturning (lbs)
Ev-Vert. earthquake (lbs)
D - Dead (lbs)
F-Deas. (bss)
Combined: $T-\mathrm{T}=\mathrm{D}+\mathrm{Ev}$ (tens); $\mathrm{C}+\mathrm{D}+\mathrm{Ev}$ (comp) Unfactored Loads
Unfactored
W. Dead

Horizontal
$\xrightarrow{\text { Horizontal }}$ Shear
Shear line, wall, or segment force V (lbs) Diaphragm-to-collector force V/L (plff)
Shear wall design force $\mathrm{V}=\mathrm{V} / \mathrm{FHS}$ (p) Shear wall design force $\mathrm{V}=\mathrm{V} / \mathrm{FHS}$ (pif)
Drag strut force (lbs) Sragap/blocking force (lbs)
Strap/blockí
144 Wind uplift

Elevation View
Shearline 1, at $X=0 \mathrm{ft}$, Level 1
Flexible Diaphragm Wind Design

Factored Forces ertical
Hold-down force (lbs)
Compression force (lbs)
T - Tens. overturning (bss)
C - Comp. overturning (lbs)
U - Wind uplift (Ibs)
D-Dead (lbs)
Factors: (los)
Combined: $T-D+U$ (tens): $C+D-U$ (tens), 1.0 (comp)
Unfactored Loads
Unfoctored Dead

449 Wind uplift
Horizontal
\rightarrow Horizontal - - - -2
Shear line, wall, or segment force V (lbs) Diaphragm-to-collector force V/L (plf)
Sear wall desig force $=$ V/FHS (p) Shear wall design force $\mathrm{V}=\mathrm{V} / \mathrm{FHS}$ (pif) Drag strut force (lbs)
Strap/blocking force (bs)
Strap/blockin
\square

Elevation View
Shearline C, at $Y=40.25 \mathrm{ft}$, Level 1
Flexible Diaphragm Seismic Design.

Factored Forces
Factored
Vertical
Vertical -down force (lbs)
Compression force (lbs)

- Tens. overturning (lbs)
C - Comp. overturning (lbs)

C - Comp. overturning (lbs)
Ev-Vert. earthquake (lbs)
D- Dead (lls)
= Strap/blocking force (lbs)
Factors: T,C,Ev $=0.7 ; D=0.6$ (tens), 1.0 (comp)
Combined: T-D + -
Unfactored Loads
WH Dead
191 Wind uplift

Horizontal
\rightarrow Line/wall force for collector design \vee (Ibs) -2.5 Diaphragm-to-collector force V/L (pff) Collector-to-sheathing force V/FHS (plf) \rightarrow Drag strut force (lbs) - Strap/blocking force (lbs)
ens) 1.0 (comp)

Elevation View
Shearline C, at $Y=40.25 \mathrm{ft}$, Level 1
Flexible Diaphragm Wind Design.

EXISTING STRUCTURE IS NOT
PART OF THE SCOPE OF WORK.
INTENT OF MODEL IS TO DERIVE
VERTICAL ANCHOR LOADS FROM WIND AND SEISMIC

FAILURE NOTE IS FOR THE SHEAR
CAPACITY OF THE EXISTING WALL.
NORTH CHAPEL WALL IS GETTING LATERAL LOAD FROM BUILDING ADDITION

CHECK POST \& FOOTING AT
NORTHEAST CORNER OF CHAPEL.

Factored Forces

Vertical
t Hold-d
Compown force (lbs)
Compression force (lbs)
T. Tens. overturning (lbs)
T - Tens. overturning (lbs)
C - Comp. overturning (lbs)
C Comp. overturning
U - Wind uplift (lbs)
D - Dead (llss)
Factors: TCU $\mathrm{T}=06$. $\mathrm{D}=0.0$ Strap/blocking force (lbs)
Combined: $T,-D+U$ (tens): C (tens), 1.0 (comp)
Unfactored Loads
WH Dead
191 Wind uplift
in Dead

All shearwalls, Design group 3:
horizontal lumber w/8d common nails @ 3 or 2 per board
C\&C sheath. load: $17.7 / 21.8$ psf; cap. 0.0
Nail withdr. load 0.0 lbs ; cap. 0.0
Interior surfacee:
$3 / 4^{4 \prime}$ horizontal lumber w/ 8d common nails @ 3 or 2 per board

Design shear force: 275.8 pli
Design shear force: 275.8 plf
Combined capacity (added): 140.0 plf

UPLIFT FORCE NCLUDE STRAP AT CORNERS, BOTH OF ORIGINAL
OF ORIGINAL
FRAMED TO
BUILDING ADDITION
${ }^{25}$
$\xrightarrow{\text { Horizontal }}$ Line/wall force for collector design \vee (lbs) -2.5 Diaphragm-to-collector force VIL (plf) Diaphragm-to-collector force V/L (plf) Drag strut force (lbs) trap/blocking force (lbs)
10 (comp

