Plan Check Comments

Douglas County Community Development

1594 Esmeralda Ave Minden, NV 89423

Permit Type: Commercial Permit

Project Description: Genoa Church Foundation Repair, structural only

Document Name: Structural Calcs SUB 2

Report Date: 03-29-2023

Reviewer Contact Information:

Application Number: DB23-0477

Site Address: 182 NIXON ST Genoa, NV 89411

Reviewer Name	Reviewer Email	Reviewer Phone No.:	
Tim Davis	tdavis@douglasnv.us	775-782-6224	
Rebecca Spates	rspates@douglasnv.us	775-782-6226	

<u>General Comments</u>

Corrections in the following table need to be applied before a permit can be issued

Prepared for: Town Purpared for: Town Prepared for: Town Purposes. -Sec. 106.3.1

GENOA CHURCH FOUNDATION REPAIR

Calculation Package

February 28, 2023

moffatt & nichol

DOUGLAS COUNTY COMMUNITY DEVELOPMENT BUILDING DIVISION BUILDER AND OWNER RESPONSIBLE FOR COMPLIANCE WITH ALL APPLICABLE CODES ALL WORK SUBJECT TO FIELD INSPECTION APPROVAL

Document Verification

Client	Town of Genoa	
Project name	Genoa Church Foundation Repair	
Document title	Calculation Package	
Status	60%	
Date	February 28, 2023	
Project number	222911	

Revision	Description	Issued by	Date	Checked
1	Add PE Seal	CW	3/17/23	GN

Produced by:

Moffatt & Nichol 111 West Telegraph Street Suite 204 Carson City, NV, 89703 775-305-1466 www.moffattnichol.com

 Project : Genoa Church Foundation Replacement

 Structure : Chapel

 Originator : Cory Wilder

 Checker : ______

Sheet : 1 of 18 Date : 2/13/2023 Date :

Project Description

History

The 40 ft x 20 ft church chapel was rebuilt in 1910 after a fire. In 1979-1980 the bell tower, porch, new roof, new doors and a natural gas heating system were installed. In 1991-1992 the church was expanded with reception area, dressing rooms, restrooms and a wheelchair ramp.

Structural Issue

The chapel's 40 ft x 20 ft wood frame structure is founded on wood posts and stone footings. The crawl space exterior has wood siding, or skirting, which is exposed to soil and standing water due to drainage issues. The exterior skirting is deteriorating. Additionally, there is differential settlement across the structural foundation elements causing unlevel flooring. The settlement and impacts to the structure are most pronounced on the west wall of the chapel where deformation from the bottom of the wall to the top of wall.

Proposed Solutions

 analyze the existing structure for seismic, wind, snow, live and dead loads
 design replacement foundation including exterior concrete footer with concrete block; and interior posts with concrete footers

References

- International Building Code (IBC) 2021
- ASCE 7-22 Minimum Design Loads and Associated Criteria for Buildings and Other Structures
- ASCE 7 Online Hazard Tool
- American Concrete Institute (ACI) 318, Building Code Requirements for Structural Concrete
- National Design Specification for Wood (NDS) 2018

Assumptions

• Scope is limited to analysis and upgrade of the chapel foundation system only.

Calculation Notes

- Hand calculations are done in Mathcad and Excel, where input and results are carried from one application to the other. Notes are included in these Mathcad calculations where to go in the Excel calculations.
- The hand calculations are based on a rigid building frame and an equivalent lateral force procedure. For simplicity these are only applied to the chapel structure.
- The computer program Woodworks was used to original chapel and building addition. Woodworks was used to analyze for dead, wind and seismic loads and allows for both rigid and flexible analyses.
- The goal of using Woodworks was to derive foundation reactions only. The capacity of the existing walls, and roof structure was not part of the scope of work.

 Project : Genoa Church Foundation ReplacementSubject : Design Calculations

 Job No : 222911
 Originator : Cory Wilder

 Structure : Chapel
 Checker : ______

Soismic - Equivalent Lat	toral Force Procedure	e per ASCE 7
The equivalent latera of seismic events on the seismic response structure, which is us MCE _R spectra.	al force procedure is use structures. Base Shear coefficient. Ta is the ap ed to select Sa, the 5%	ed as an approximate way to evaluate impacts r, V, is the product of Cs and W, where Cs is oproximate fundamental period of the damped design response acceleration from
Approximate Fur	ndamental Period, Ta	ASCE 7 12.8.2
C _t := 0.02	x := 0.75	from Table 12.8-2. Values of Approximate Period Parameters Ct and x, for "All Other Structural Systems". Note that back of chapel is adjoined by addition which makes it more rigid.
h _n := 14.22	ft	h _n = structural height from top of foundation to roof system center of mass, including bell tower. See graphic in load spreadsheet.
$T_a := C_t \cdot h_n^x$	$T_a = 0.146$ s	seconds
Design Spectral	Acceleration Paramete	ASCE 7 11.4.5.1

Sa =Design spectral response acceleration parameter defined in Section 11.4.5.1 and determined for the period T defined in Section 12.8.2

Per ASCE 7 11.4.5.1, (1) Sa, shall be taken as 2/3 of the multi-period 5%-damped MCE_R (risk-targeted maximum considered earthquake) response spectrum from the USGS Seismic Design Geodatabase for the applicable site class; and (2) At each response period, T, less than 10 s and not equal to one of the discrete values of period, T, listed in Item 1 above, Sa, shall be determined by linear interpolation between values of Sa

$$S_a := \frac{2}{3} \cdot \left[2.21 - (0.15 - T_a) \cdot \frac{(2.21 - 1.85)}{(0.15 - 0.10)} \right]$$

Interpolation of Multi-Period MCE_R Spectrum-2022 Source: ASCE 7 Hazards Report

 $S_a = 1.456$ g

Per 12.8.1.1, Method 1, where Equation(12.8-2) is used to calculate the siesmic response coefficient, and the period T is less than the period at which Sa is maximum, the maximum value of Sa shall be used.

For the Multi-Period MCE_R spectrum the maximum Sa of 2.48g occurs at a period of 0.30 seconds which is greater than Ta calculated above. Therefore 2/3 of 2.48 g shall be used.

No : 222911 cture : Chapel		Originator : Cory Wilder Checker :	Date : 2/13/202 Date :
$S_{av} = \frac{2(2.48)}{3}$	S _a = 1.653 g		
Seismic Response Coef	fficient, Cs	ASCE 7 12.8-2	
R =Response modification accordance with Section 1 [°]	factor in Table 12.2 1.5.1.	2-1; and le = Importance Factor determined in	
l _e := 1.00	per Table 1.5-2	2 for Risk Category II as defined in Table 1.5-1	
R;≔ 6.5	per Table 12.2-1, A.16. Light framed (wood) walls sheathed with wood structural panels rated for shear resistance.		
$C_{s} := \frac{S_{a}}{\left(\frac{R}{l_{e}}\right)}$	C _s = 0.254 g		
Effective Seismic Weig	nt, W	ASCE 7 12.7.2	
$W_d := 34223 \cdot lbf$	W = e unifor	effictive seismic weight of structure. Dead load + 1 rm snow load for flat roofs, Pf. From load spreads	15% of heet.
$W_s := 6251 \cdot lbf$	Snow I of 42 x	load assumed 15% of 45.1 psf, on flat projection 22 feet. From load spreadsheet.	
$W := W_d + W_s$	$W = 40474 \cdot lb$	of	
Base Shear, V		ASCE 7 12.8-1	
$\mathbf{W} := \mathbf{C}_{\mathbf{s}} \cdot \mathbf{W}$	$V = 10295 \cdot 1000$	bf	
Seismic Overtuning Mo	ment, M _{OE}		
$M_{OE} := 95472 \mathrm{ft} \cdot \mathrm{lbf}$		See Loading Spreadsheet	
Dead + 15% Snow Right	ing Moment, Mr		
$M_r := 404742 ft \cdot lbf$			
$FS := \frac{M_r}{M_r}$	FS = 4.2	Δ - Globally OK for seismic overturning.	

Project : Genoa Church Foundation	on Replacement Subject : Design Calculations
Job No : 222911	Originator : Cory Wilder
Structure : Chapel	Checker :
•	

Shear Wall Reactions

Assume end walls have capacity to gather shear load from overturning forces. This is conservative considering the claboard siding on exterior and interior surfaces. Calculate reactions at corners assuming moment couple across width of end wall.

$$R_{E} := \frac{\frac{M_{OE}}{2}}{20ft} \qquad R_{E} = 2387 \cdot lbf$$

Reaction force does not account for countering dead load, which is conservative.

Snow Loads

Snow load of 45.1 psf. 20-year MRI Value from ASCE 7. See BOD. Flat projection of 42 x 22 feet to account for eves.

$W_{\text{WW}} := 45.1 \cdot \text{psf} \cdot 42 \text{ft} \cdot 22 \text{ft}$	$W_s = 41672 \cdot lbf$	
$L_p := (20ft + 40ft) \cdot 2$	$L_p = 120 \cdot ft$	
$W_{sp} := \frac{W_s}{L_p}$	$W_{sp} = 347.27 \cdot \frac{lbf}{ft}$	Assume vertical snow load distributed evenly around perimeter of structure. This is feasible given the heavy timber floor

frame.

Wind Loads

Wind Speed: Minimum 120 MPH V ult – Exposure C, Risk Category II per Douglas County

Wind analysis per ASCE 7 - 22, Chapters 26 and 27 (Directional Procedure)

V _{ult} := 120	From Douglas County. This is a conservative wind speed given the setting of the church which is surrounded by trees and other buildings. However it's location does not meet the criteria for Exposure B.
K _{zt} := 1.0	No additional topographic effect due to hills, ridges, etc. Per ASCE 26.8
$K_e := 0.86 - (.03 \cdot .825)$	Elevation of church is 4825 feet. Value interpolated from Table 26.9-1 using delta between Ke values and 82.5% of elevation range
$K_{e} = 0.835$	J J
K _z := 0.85	For vertical wall segments less than 15 ft high. From Table 26.10-1
K _h := 0.85	For vertical roof projections at mean roof height of approximately 14.2 feet. See load calc spreadsheet. From Table 26.10-1
$K_{hbell} := 0.96$	For bell tower which is appromately 27 feet high. From Table 26.10-1

Project : Genoa Church Foundation Repla Job No : 222911 Structure : Chapel	acement Subject : Design Calculations Originator : Cory Wilder Checker :	s Sheet : 5 of 18 Date : 2/13/2023 Date :
$q_{zwall} := 0.00256 \cdot K_z \cdot K_{zt} \cdot K_e \cdot$	V_{ult}^2 $q_{zwall} = 26.172 \frac{lbf}{ft^2}$	per equation 26.10-1
$q_{hroof} \coloneqq 0.00256 \cdot K_h \cdot K_{zt} \cdot K_e$	$\cdot V_{ult}^{2}$ $q_{hroof} = 26.172$	per equation 26.10-1
$q_{hbell} := 0.00256 \cdot K_{hbell} \cdot K_{zt}$	$K_{e} \cdot V_{ult}^{2}$ $q_{hbell} = 29.559$	
Wind Loads on Buildings: Main For	ce Resisting System (Directional Proc	edure)
G _f := 0.85	Gust effect factor for rigid bu	uildings per 26.11.1
K _d := 0.85	Wind Directionality Factor fo	r main building per Table 26.6-1
$K_{dbell} := 0.90$	= 0.90 Wind Directionality Factor for square bell tower per Table 26.6-1	
GC _{pi} := 0.18 +/-	Internal pressure coefficient	for partially open buildings per Table

Internal pressure coefficient for partially open buildings per Table 26.13-1. Value can be positive or negative, whichever produces the more conservative result when combined with external wind loads.

External pressure coefficients, Cp, for the windward and leeward sides of the building account for positive and negative pressures. The figure below assumes wind from the right which puts positive pressure against the wall, roof and bell tower; and negative pressures on the opposite side of the building. Figure is copied from the loading spreadsheet.

Sheet : 6 of 18 Date: 2/13/2023 Date : _____

External pressure coefficients, Cp, for partially open building. See Table 27.3-1.		
Roof pitch = 8:12, or θ = 33.7 deg		
C _{pww} := 0.8	Cp for the windward vertical wall. Assume rectangular vs parabolic distribution.	
$C_{pwr} := 0.3$	Cp for the windward roof	
C _{plr} := -0.6	Cp for the leeward roof	
$C_{plw} := -0.3$	Cp for the leeward wall	
C _{pbell} := 0.8	Cp for the windward bell tower	

Section 27.3 provides wind load formula for partially open buildings.

$p_{ww} \coloneqq q_{zwall} \cdot K_d \cdot G_f \cdot C_{pww} + q_{zwall} \cdot K_d \cdot GC_{pi}$	p _{ww} = 19.13	1bf ft ² Win	dward wall
$p_{wr} := q_{hroof} \cdot K_d \cdot G_f \cdot C_{pwr} + q_{hroof} \cdot K_d \cdot GC_{pi}$	p _{wr} = 9.68	Win root	dward f
$\mathbf{p}_{lr} \coloneqq \mathbf{q}_{hroof} \cdot \mathbf{K}_{d} \cdot \mathbf{G}_{f} \cdot \mathbf{C}_{plr} - \mathbf{q}_{hroof} \cdot \mathbf{K}_{d} \cdot \mathbf{GC}_{pi}$	$p_{lr} = -15.35$	Lee	ward roof
$p_{lw} \coloneqq q_{zwall} \cdot K_{d} \cdot G_{f} \cdot C_{plw} - q_{zwall} \cdot K_{d} \cdot GC_{pi}$	$p_{1w} = -9.68$	Lee	ward wall
$p_{bell} := q_{hbell} \cdot K_{dbell} \cdot G_f \cdot C_{pbell}$	p _{bell} = 18.09	Windward Internal of not applie bell tower	d wall of bell tower. r leeward pressure d to mostly open

Calculated wind loads exceed minimum design wind loads of 16 lb/sf and 8 lb/sf for wall and roof elements, respectively. Per section 27.1.5.

Sheet : 7 of 18 **Date :** 2/13/2023 Date : _____

Break roof pressures into vertical and horizontal components using roof pitch, 8:12, or 33.7 degree angle. / ~

$$p_{wrx} := p_{wr} \cdot \sin\left(33.7 \cdot \frac{3.14}{180}\right) \qquad p_{wrx} = 5.37 \qquad \frac{lbf}{ft^2}$$

$$p_{wry} := p_{wr} \cdot \cos\left(33.7 \cdot \frac{3.14}{180}\right) \qquad p_{wry} = 8.05$$

$$p_{lrx} := p_{lr} \cdot \sin\left(33.7 \cdot \frac{3.14}{180}\right) \qquad p_{lrx} = -8.51$$

$$p_{lry} := p_{lr} \cdot \cos\left(33.7 \cdot \frac{3.14}{180}\right) \qquad p_{lry} = -12.77$$

Go to load spreadsheet for application of wind loads to structure and overturning moment, shear, and reactions.

Live Loads

Live load for Assembly Area with Moveable Seats, Per ASCE7-22 Table 4.3-1

Live Load = 100 psf

Application

Areas

Exterior Foundation

Assuming a 0.5 x L for exterior tributary area around perimeter. Where L is the length of floor joist from interior support and exterior foundation wall, or 5 feet. See AISC beam diagram for four equal spans with first and third spans loaded. Max shear at beam ends is 0.446 x L.

Lext = 100 psf * 0.5 * 5 ft = 250 lb/ft of exterior foundation

Interior Foundation

The interior floor frame is supported by posts on a 5' by 5', or 25 SF tributary area.

Lint = 100 psf * 25 sf = 2,500 lb

Go to load spreadsheet for application of live loads to structure.

DB23-0477

Project : Genoa Church Foundation	Replacement Subject : Design Calculations
Job No : 222911	Originator : Cory Wilder
Structure : Chapel	Checker :

Load Combinations	
Exterior	
Foundation	
Load combinations for strength design are provided in ASCE7-22, Chapter 2.	
2.3 LOAD COMBINATIONS FOR STRENGTH DESIGN 2.3.1 Basic Combinations 1a. 1.4D 2a. 1.2D + 1.6L + (0.5Lr or 0.3S or 0.5R) 3a. 1.2D + (1.6Lr or 1.0S or 1.6R) + (L or 0.5W) 4a. 1.2D + 1.0(W or WT)+L + (0.5Lr or 0.3S or 0.5R)	
4a $1.2D + 1.0(W or WT) = 1 (0.0E) or 0.00 or 0.01()$	
2.3.6 BasicCombinationswithSeismicLoadEffects 6. 1.2D + Ev + Eh + L + 0.15S 7. 0.9D - Ev + Eh	
The following loads were evaluated for the chapel structure.	
Load Calculation Source Note	
Dead Load. D see Dead-Seismic-Snow tab	
Snow Load, S see Dead-Seismic-Snow tab	
Seismic Load. E see Dead-Seismic-Snow tab +/- (with 15% snow load)	
Wind Load. W see Wind tab +/-	
Live Load, L see Interior Dead-Live tab	

Load were derived for exterior wall foundations as distributed loads, and combined using the factors provided above.

Go load spreadsheet for individual wall loads and load combinations. Results are presented below.

	Lo	ad Factors	and Distrib	uted Load	s			Loa	d Combina	tions and	Load		
	Dead	Live	Snow	Wind	Siesmic								
	285	250	347	235	119		Dead	Live	Snow	Wind	Siesmic	Total	
Combination	D	L	S	W	E		D	L	S	W	E	(PLF)	
1a	1.4						399	0	0	0	0	399	
2a	1.2	1.6	0.3				342	400	104	0	0	846	
3a-1	1.2	1	1				342	250	347	0	0	939	
3a-2	1.2		1	0.5			342	0	347	117	0	807	
4a	1.2	1	0.3				342	250	104	0	0	696	
5a-1	0.9			1			257	0	0	235	0	491	
5a-2	0.9			-1			257	0	0	-235	0	22	*
6	1.2	1	0.15		1		342	250	52	0	119	764	
7-1	0.9				-1		257	0	0	0	-119	137	
										**	Max	939	
											Min	22	
*	Close to min load does no factor of safe	nimum. Ac ot include s ety.	dd anchors stem wall o	along per or footing,	imeter of cł so anchors	napel footir will provid	ng. Dead e higher						
**	Add stem w	all and foo	ting for che	eck of max	soil pressu	re.							

Sheet : 9 of 18 Date : 2/13/2023 Date : _____

Interior Footing

Assuming that wind, siesmic and snow loads are carried by the exterior stem wall and footing. Interior posts and footings will carry live and tributary dead loads from floor and framing. Results for interior foundations are provide below from the Load spreadsheet.

	Load Factors and Distributed Loads						Loa	d Combina	tions and	Load		
	Dead	Live	Snow	Wind	Siesmic							
	734	2500	0	0	0	(lb)	Dead	Live	Snow	Wind	Siesmic	Total
Combination	D	L	S	w	E		D	L	S	W	E	(lb)
1a	1.4						1028	0	0	0	0	1028
2a	1.2	1.6	0.3				881	4000	0	0	0	4881
3a-1	1.2	1	1				881	2500	0	0	0	3381
3a-2	1.2		1	0.5			881	0	0	0	0	881
4a	1.2	1	0.3				881	2500	0	0	0	3381
5a-1	0.9			1			661	0	0	0	0	661
5a-2	0.9			-1			661	0	0	0	0	661
6	1.2	1	0.15		1		881	2500	0	0	0	3381
7-1	0.9				-1		661	0	0	0	0	661
											Max	488
											Min	66

Project : Genoa Church Foundation ReplacementS	U
Job No : 222911	C
Structure : Chapel	
	Project : Genoa Church Foundation Replacement Job No : 222911 Structure : Chapel

Footing Sizing

Interior Post Footing

Interior post footings will carry 2,500 lb of live load and 516 lb of dead load from combined flooring, framing and post materials. Assuming the post footing is 24"x24"x10". See Loading spreadsheet for details about loads.

p_{postmax} := 48811bf

 $A_{postfoot} := 2ft \cdot 2ft$

 $A_{postfoot} = 4 \cdot ft^2$

 $p_{\text{postfoot}} := \frac{p_{\text{postmax}}}{A_{\text{postfoot}}}$ $p_{\text{postfoot}} = 1220 \cdot \text{psf}$ < 1,500. OK

Two Way Punching Shear Check

Reference ACI 318-19, Section 22.6.5 for two way shear strength without shear reinforcement.

OK

$$\begin{split} \lambda &= 1 \text{ for normal wieght concrete per 19.2.4.} \\ \lambda s &= 1 \text{ per 22.5.5.1.3} \end{split}$$

5

f_c := 2500psi

b := 6in

d := 10in - 3in

$fc_{check} := \left(\frac{f_c}{psi}\right)^{.5} \cdot psi$	$fc_{check} = 50 psi$
$v_{c2} := 4 \cdot \left(\frac{f_c}{psi}\right)^{.5} \cdot psi$	v _{c2} = 200 psi

Evipting foundation posts are equare rough out 6"v6"

per 22.6.3.1 (fc)^.5 cannot exceed 100 psi -

Existing foundation posts are square rough cut 6"x6" timbers.

22.6.4.1(a)

Assuming 3" min cover on footing rebar

 $b_0 := 4 \cdot \left(b + \frac{d}{2} \right)$ $b_0 = 38 \text{ in}$

d = 7 in

 $V_{c2} := v_{c2} \cdot b_0 \cdot d$ $V_{c2} = 53200 \cdot lbf$

>> 4881 lb maximum factored load - OK

Project : Genoa Church Foundation Job No : 222911 Structure : Chapel	Replacemen tSubject : [Originato Checker	Design Calculations or : Cory Wilder r :	Sheet : 11 of 18 Date : 2/13/2023 Date :
One Way Direct Shear			
$Q_u := \frac{p_{postmax}}{24in \cdot 24in}$	Q _u = 8.474 psi	Footing pressure from r	nax factored load
b _w ∷= 24in			
$\mathbf{b}_{\mathbf{p}} \coloneqq \frac{\left(\mathbf{b}_{\mathbf{W}} - 6\mathrm{in}\right)}{2} - \mathrm{d}$	$b_p = 2$ in	Width of footing outside from face of column	failure surface at d away
$V_{c1} \coloneqq \frac{\left(Q_{u} \cdot b_{p} \cdot b_{w}\right)}{d \cdot 24in}$	V _{c1} = 2.421 psi	Shear stress resulting fi	rom footing pressure
$v_{c1} \coloneqq 2 \cdot \left(\frac{f_c}{psi}\right)^{.5} \cdot psi$	v _{c1} = 100 psi	Shear capacity. Simplifi	ed form of 22.5.5.1 (a)

vc1 >> Vc1 - OK

Project : Genoa Church Foundation	on Replacement Subject : Design Calculations	Sheet :	12 of 18
Job No : 222911	Originator : Cory Wilder	Date :	2/13/2023
Structure : Chapel	Checker :	_ Date :	

Exterior Footing

The exterior footing will support an 8-inch reinforced CMU stem wall. The dead loads for foundation materials must be added to the maximum distributed load.

Assume footing width of 18 inches and depth of 10 inches.

Assume maximum number of CMU block courses = 5 to ensure bottom of footing is below design frost depth.

$$w_{max} := 939$$

 $w_{cmu} \coloneqq \frac{5 \cdot 8 \cdot 8}{144} \cdot 150$ $w_{cmu} = 333.3$

 $w_{\text{foot}} \coloneqq \frac{10 \cdot 18}{144} \cdot 150$ $w_{foot} = 187.5$

 $w_{footdes} := w_{max} + w_{cmu} + w_{foot}$

Maximum allowable soil bearing pressure = 1,500 psf per Douglas County, unless site specific evaluations are completed. No geotechnical information is available therefore the Douglas County criteria will be used.

 $w_{footdes} = 1459.8$

$$p_{soil} \coloneqq \frac{w_{footdes}}{\frac{18}{12}}$$
 $p_{soil} = 973.2$ psf < 1,500. OK

Exterior Spread Footing Shear Check

...

$$b_{\text{min}} = 18 \text{ in}$$

$$b_{\text{min}} = \frac{(b_{\text{m}} - 6 \text{ in})}{2} - d \qquad b_{\text{min}} = -1 \text{ in}$$

Width of footing outside failure surface at d away from face of column.

No portion of footing is outside failure plane.

lbf

ft

Check shear capacity of 1 foot length of footing versus maximum factored distributed load.

 $\rm V_{cspread}$ = $8400\,plf~$ >> 939 plf factored load - OK $V_{cspread} := v_{c1} \cdot d$

Project : Genoa Church Foundation	ReplacementSubject : Design Calculations	Sheet :	13 of 18
Job No : 222911	Originator : Cory Wilder	Date :	2/13/2023
Structure : Chapel	Checker :	_ Date :	
•		-	

kip:= 1000·lbfpcf:=
$$\frac{lbf}{ft^3}$$
ksi:= $\frac{kip}{in^2}$ plf:= $\frac{lbf}{ft}$ klf:= $\frac{kip}{ft}$ psf:= $\frac{lbf}{ft^2}$ ksf:= $\frac{kip}{ft^2}$

Reinforcing Bar diameter and area

$$d_{\text{bar}} := \begin{pmatrix} 0.375\\ 0.500\\ 0.625\\ 0.750\\ 0.875\\ 1.00\\ 1.128\\ 1.270\\ 1.410 \end{pmatrix} \cdot \text{in} \qquad A_{\text{bar}} := \begin{pmatrix} 0.11\\ 0.20\\ 0.31\\ 0.44\\ 0.60\\ 0.79\\ 1.00\\ 1.27\\ 1.56 \end{pmatrix} \cdot \text{in}^2$$

 Project : Genoa Church Foundation Replacement
 Subject : Design Calculations

 Job No : 222911
 Originator : Cory Wilder

 Structure : Chapel
 Checker : ______

Sheet : 14 of 18 Date : 2/13/2023 Date : _____

Multi-Period MCER Spectrum-2022 Source: ASCE 7 Hazards Report

T(s)	Sa(g)
0	0.97
0.01	0.97
0.02	0.98
0.03	1.05
0.05	1.31
0.075	1.62
0.1	1.85
0.15	2.21
0.2	2.38
0.25	2.44
0.3	2.48
0.4	2.37
0.5	2.29
0.75	1.94
1	1.66
1.5	1.17
2	0.89
3	0.57
4	0.38
5	0.27
7.5	0.13
10	0.081

Sheet : 15 of 18 Date : 2/13/2023 Date : _____

Sheet : 16 of 18 Date : 2/13/2023 Date : _____

Sheet : 17 of 18 Date : 2/13/2023 Date : _____

Figure 2.4. Critical section of direct shear

347 lb/ft

	CLIENT: Town of G	enoa	JOB # : 222911 Carson City		
	PROJECT: Church Fo	undation Repair	SHEET: 1 OF 1		
	DESIGN FOR:	Dead, Seismic, Snow	DESIGNER: CAW	DATE:	
moffatt & nichol		Load Calculations	CHECKER:	DATE:	

References/Comments

Roof Projection for Snow Loads

1) ASCE 7-22 Minimum Design Loads and Associated Criteria for Buildings and Other Structures

2) This spreadsheet references information developed within separate Mathcad calculations

3) Some results from this spreadsheet are copied back to Mathcad calculations

4) Weights of Building Materials - Structural Design In Wood (Stalnaker), and McGraw Hill Access Engineering Web Page

												Dead Loa	ıds								Seism	ic Loads		Snow Loads
									Material N	Neights (ps	f)													Material (psf)
										T&G		T&G			6x6									
					Asphalt	Roll	2x6 Joists	2x4 Studs	Plywood	Wood 1-		Wood			Beam/Pos	Material		Moment	Righting	Cs (g)	Horizontal	Moment	Overturning	
Building	H/L	W	Area	Qty	Shingle	Roofing	@ 24" 0.0	. @16" O.C.	1/2"	1/2"	Insulation	1/2"	Carpet	Siding	t (plf)	Total	Weight	Arm (A)	Moment	(Note 1)	Shear ,Fs	Arm (A)	Moment	Snow
Component	ft	ft	sf	ea	2	1	1.15	1.09	1.5	4.5	1.5	1.5	1.5	2	8.40	psf	lb	ft	ft-lb		lb	ft	ft-lb	45.1
West Roof	13.5	42	567		1	1	1		1			1				7.15	4,052	5	20,258	0.254	1,029	15.3	15,780	
East Roof	13.5	42	567		1	1	1		1			1				7.15	4,052	15	60,775	0.254	1,029	15.3	15,780	
North Gable	6.7	10	67			1		1	1		1	1		1		8.59	573	10	5,729	0.254	146	14.2	2,070	
South Gable	6.7	10	67			1		1	1		1	1		1		8.59	573	10	5,729	0.254	146	14.2	2,070	
North Wall	12.0	20	240			1		1	1		1	1		1		8.59	2,063	10	20,625	0.254	524	6	3,143	
South Wall	12.0	20	240			1		1	1		1	1		1		8.59	2,063	10	20,625	0.254	524	6	3,143	
West Wall	12.0	40	480			1		1	1		1	1		1		8.59	4,125	0	-	0.254	1,048	6	6,287	
East Wall	12.0	40	480			1		1	1		1	1		1		8.59	4,125	20	82,500	0.254	1,048	6	6,287	
Ceiling	20	40	800				1				1	1				4.15	3,317	10	33,167	0.254	842	12.0	10,109	
Floor	20	40	800				1			1			1			7.15	5,717	10	57,167	0.254	1,452	1	1,452	
Floor Frame	40			5											1		1,681	10	16,806	0.254	427	1	427	
Posts	3			45											1		1,134	10	11,344	0.254	288	0	-	
Bell Tower Walls	4	20	80			1		1	1					1		5.59	448	10	4,475	0.254	114	22.7	2,576	
Bell Tower Roof	6	6	36		1	1	1		1							5.65	203	10	2,033	0.254	52	26.7	1,377	
Bell				1													100	10	1,000	0.254	25	24.7	627	
															Dead	Load Only	34,223		342,232		8,693		71,126	
	H/L	w	Area																					
	ft	ft	sf	-																				

15% of Total Snow Load for Seismic 6.251 10 62,510 0.254 41,672 1.588 15.3 24,346 Dead Load + 15% Snow Load for Seismic 404,742 95,472 40,474 10,280

285 lb/ft

Snow Load Distributed to Exterior Footing Notes

1) See Mathcad Calcs for seismic acceleration, Cs 2)

Seismic Only Global Check (DL Righting / Wind Overturning Moment) 4.2 FS

> Location Location

А В

Seismic Global Reactions at A and B* 4774 -4774 lb

Seismic Reactions at Corners** 2387 -2387 lb

Seismic Distributed Load Along East & West Walls*** 119 -119 lb/ft

> *Assumes a moment couple of 20 feet **Assumes all loads go to shear wall ends ***Assumes all seismic loads distributed to N/S wall footings Reactions do not account for countering dead loads.

SS Lumber Weights										
(Used in Material Weight Calcs Above)										
SS Wood Density	40	pcf								
	lb/ft									
2x4	1.46									
2x6	2.29									

6x6

22

42

8.40

924

CLIENT:	Town of Genoa	JOB # : 222911 Carson City					
PROJECT:	Church Foundation Repair	SHEET:	1 OF 1				
DESIGN FC	R: Wind Load Calculations	DESIGNER:	CAW	DATE:			
		CHECKER:		DATE:			

References/Comments

1) ASCE 7-22 Minimum Design Loads and Associated Criteria for Buildings and Other Structures

2) This spreadsheet references information developed within separate Mathcad calculations

3) Some results from this spreadsheet are copied back to Mathcad calculations

					Wind		Overturni	Dead Load		Wind	
				Moment	Pressure	Wind	ng	Righting		Load	
Building	H/L	W	Area	Arm (A)	(Note 1)	Load	Moment	Moment	Shear	Direction	Note
Component	ft	ft	sf	ft	lb/SF	lb	ft-lb	ft-lb	lb		
West Roof - x	13.5	42	567	15.3	-8.51	-4825	73986		4825	t	
West Roof - y	13.5	42	567	5	-12.77	-7241	36203			†	
East Roof - x	13.5	42	567	15.3	5.37	3045	46687		3045	-	
East Roof - y	13.5	42	567	15.0	8.05	4564	-68465			↓ I	
West Wall	12	40	480	6	-9.68	-4646	27878		4646	-	
East Wall	12	40	480	6	19.13	9182	55094		9182	-	Note 2
Bell Tower	8	5	40	22.7	18.09	724	16402		724	-	
							187785	342232	22422		

Notes

1) See Mathcad Calcs for wind pressures

2) Windward wall pressure assumed linear vs parabolic. Conservative.

Wind Only Global Check (DL Righting / Wind Overturning Moment) 1.8 FS

	Location	Location
	А	В
Wind Global Reactions at A and B*	9389	-9389 lb
Wind Reactions at Corners**	4695	-4695 lb
Wind Distributed Load Along East & West Walls***	235	-235 lb/ft

*Assumes a moment couple of 20 feet

**Assumes all loads go to shear wall ends

***Assumes all wind loads distributed to N/S wall footings

Reactions do not account for countering dead loads.

Wind load application perASCE 7-22 Figure 27.3-1 Windward wall pressure assumed linear vs parabolic. Conservative.

250

lb/ft

	CLIENT: Town	of Genoa	JOB #: 2229	JOB # : 222911 Carson City			
	PROJECT: Church	h Foundation Repair	SHEET: 1 OF 1				
	DESIGN FOR:	Interior Dead Loads and	DESIGNER:	CAW	DATE:		
moffatt & nichol		Live Loads	CHECKER:		DATE:		

References/Comments

1) ASCE 7-22 Minimum Design Loads and Associated Criteria for Buildings and Other Structures

2) This spreadsheet references information developed within separate Mathcad calculations 3) Some results from this spreadsheet are copied back to Mathcad calculations

4) Weights of Building Materials - Structural Design In Wood (Stalnaker), and McGraw Hill Access Engineering Web Page

5) Live load for Assembly Area with Moveable Seats, Per ASCE7-22 Table 4.3-1

Dead Load on Interior Supports									Live Load			
						Material Weights (psf)						
						6x6	T&G		10" Thick			
					2x6 Joists	Beam/Pos	Wood 1-		150 pcf	Material		
Building	H/L	W	Area	Qty	@ 24" 0.0	. t (plf)	1/2"	Carpet	Concrete	Total	Weight	(psf)
Component	ft	ft	sf	ea	1.15	8.40	4.5	1.5	125	psf	lb	100
Floor	5	5	25				1	1		6.00	150	2500
Floor Frame	5			1		1					42	
Floor Frame	5			3	1						17	
Posts	3			1		1					25	
Footing - 10" Thick	2	2	4	1					1	125	500	
							De	ead and Liv	e Loads per P	ost Footing	734	2500

SS Lumber Weights (Used in Material Weight Calcs Above)

40

lb/ft

1.46

2.29

pcf

SS Wood Density

2x4 2x6

6x6

Notes

1) Assuming a 0.5 x L for exterior tributary area around perimeter. See AISC beam diagram on Misc tab for four equal spans Max shear at beam ends is 0.446 x L for first and third spans loaded.

Live Load Distributed to Exterior Footing (Note 1)

8.40

Floor Framing Layout

1) Interior posts and footers are at 5 foot each way.

- 2) 6" x 6" beams run north/south and rest on the interior posts and exterior foundation.
- 3) 2" x 6" floor joists run east/west and rest on the 6" x 6" beams and exterior foundation.

CLIENT: Town of Genoa	JOB # : 222911 Carson City					
PROJECT: Church Foundation Repair	SHEET: 1 OF 1					
DESIGN FOR: Load Combinations	DESIGNER: CAW DATE:					
	CHECKER: DATE:					

References/Comments

1) ASCE 7-22 Minimum Design Loads and Associated Criteria for Buildings and Other Structures

2) This spreadsheet references information developed within separate Mathcad calculations

3) Some results from this spreadsheet are copied back to Mathcad calculations

Load Combinations

Load combinations from ASCE7-22, Chapter 2

2.3 LOAD COMBINATIONS FOR STRENGTH DESIGN

2.3.1 Basic Combinations 1a. 1.4D 2a. 1.2D + 1.6L + (0.5Lr or 0.3S or 0.5R) 3a. 1.2D + (1.6Lr or 1.0S or 1.6R) + (L or 0.5W) 4a. 1.2D + 1.0(W or WT)+ L + (0.5Lr or 0.3S or 0.5R) 5a. 0.9D + 1.0(W or WT)

2.3.6 BasicCombinationswithSeismicLoadEffects

- 6. 1.2D + Ev + Eh + L + 0.15S
- 7. 0.9D Ev + Eh

Applicable?	Loading
Yes	D=Dead load
No	Di =Weight of ice
Yes	E=Earthquake load
No	F =Load caused by fluids with well-defined pressures and maximum heights other than those caused by groundwater pressure
No	Fa =Flood load
	H =Load due to lateral earth pressure (including lateral earth pressure from fixed or moving surcharge loads),
No	ground water pressure, or pressure of bulk materials
Yes	L=Live load
No	Lr =Roof live load
No	N =Notional load for structural integrity, Section 1.4
No	R=Rain load
Yes	S=Snow load
	T =Cumulative effect of self-straining forces and effects arising from contraction or expansion resulting from
	environmental or operational temperature changes, shrinkage, moisture changes, creep in component materials,
No	movement caused by differential settlement, or combinations thereof
Yes	W =Wind load
No	Wi =Wind-on-ice, determined in accordance with Chapter 10
No	WT =Tornado load, determined in accordance with Chapter 32

Exterior Footing Assuming Distributed Loads (PLF)

Dead Load, D	see Dead-Seismic-Snow tab
Snow Load, S	see Dead-Seismic-Snow tab
Seismic Load, E	see Dead-Seismic-Snow tab
Wind Load, W	see Wind tab
Live Load, L	see Interior Dead-Live tab

+/- (with 15% snow load) +/-

	Lo	Load Factors and Distributed Loads									
	Dead	Live	Snow	Wind	Siesmic						
	285	250	347	235	119						
Combination	D	L	S	W	E						
1a	1.4										
2a	1.2	1.6	0.3								
3a-1	1.2	1	1								
3a-2	1.2		1	0.5							
4a	1.2	1	0.3								
5a-1	0.9			1							
5a-2	0.9			-1							
6	1.2	1	0.15		1						
7-1	0.9				-1						

Load Combinations and Load

Live	Snow Wind		Siesmic	Total
L	S	W	E	(PLF)
0	0	0	0	399
400	104	0	0	846
250	347	0	0	939
0	347	117	0	807
250	104	0	0	696
0	0	235	0	491
0	0	-235	0	22
250	52	0	119	764
0	0	0	-119	137
	Live L 0 400 250 0 250 0 0 250 0 250 0 0 250 0	Live Jilow L S 0 0 400 104 250 347 0 347 250 104 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Live Jilow Wind L S W 0 0 0 400 104 0 250 347 0 0 347 117 250 104 0 0 0 235 0 0 -235 250 52 0 0 0 0	Live Jilow Wind Jiesinc L S W E 0 0 0 0 400 104 0 0 250 347 0 0 0 347 117 0 250 104 0 0 0 0 235 0 0 0 -235 0 250 52 0 119 0 0 0 -119

939

22

** Max

Min

 $Close \ to \ minimum. \ Add \ anchors \ along \ perimeter \ of \ chapel \ footing. \ Dead \ load \ does \ not \ include \ stem \ wall \ or \ footing, \ so \ anchors \ will \ provide \ higher \ factor \ of$

* safety.

** Add stem wall and footing for check of max soil pressure.

Interior Footing Loads (lb)

Assuming that wind, siesmic and snow loads are carried by the exterior stem wall and footing. Interior posts and footings will carry live and tributary dead loads from floor and framing. See Interior Dead-Live tab for point loads.

Dead Load, D see Dead-Seismic-Snow tab Live Load, L see Interior Dead-Live tab

Load Factors and Distributed Loads	
------------------------------------	--

	Dead	Live	Snow	Wind	Siesmic	
	734	2500	0	0	0	(lb)
Combination	D	L	S	W	E	
1a	1.4					
2a	1.2	1.6	0.3			
3a-1	1.2	1	1			
3a-2	1.2		1	0.5		
4a	1.2	1	0.3			
5a-1	0.9			1		
5a-2	0.9			-1		
6	1.2	1	0.15		1	
7-1	0.9				-1	

Load Combinations and Load

Dead	Live	Snow	Wind	Siesmic	Total	
D	L	S	W	E	(lb)	
1028	0	0	0	0	1028	
881	4000	0	0	0	4881	
881	2500	0 0 0		3381		
881	0	0	0 0		881	
881	2500	0	0	0	3381	
661	0	0	0	0	661	
661	661 0		0	0	661	
881	31 2500 0		0	0	3381	
661	0	0	0	0	661	

4881 661

Max

Min

SOFTW ARE FOR W OOD DESIGN

WoodWorks® Shearwalls 2023

Genoa Church.wsw

Jan. 30, 2023 11:48:20

Project Information

|--|

Des IBC 2021/	sign Code AWC SDPWS 2021	ASCE 7-16 Dir	Vind Standard rectional (All	heights	5)	Seismic Standard ASCE 7-16			
	Load C	ombinations			Building Cod	le Capacit	y Modification		
For Design (ASD))	For Deflection (Stre	ngth)		Wind		Seismic		
0.70 Seismic	, + 0.60 Dead	1.00 Seismic +	0.90 Dead		1.00		1.00		
0.60 Wind	+ 0.60 Dead	1.00 Wind +	0.90 Dead						
	Service Conditio	ns and Load Duration			Max SI	hearwall O	ffset [ft]		
Duration	Temperature	Moistu	re Content		Plan		Elevation		
Factor	Range Fabrication Service				(within story)		(between stories)		
1.60	T<=100F	19% (<=19%)	10% (<=19%	5)	0.50		-		
		Maximum	Height-to-width F	Ratio					
Wood	d panels	Fiberboard	Lumbe	r		Gyps	sum		
Blocked	Unblocked		Wind	Seism	ic Blo	cked	Unblocked		
3.5	2.0	-	2.0	2.0	2	.0	1.5		
	Ignore shear resis	tance contribution of			Forces based on				
Wal	ll segments	Se	ismic		Hold-downs	Applie	d loads		
Side with in	valid aspect ratio	Don't	ignore		Drag struts	Applie	d loads		
	Sh	earwall relative rigidity	: Deflection-b	ased st	iffness of wa	ll segmer	nts		
Non-identica	al materials and constr	uction on the shearline	: Allowed, exc	ept for	material type	e			
		Deflection Equation	: 3-term from	SDPWS 4	.3-1				
	Dr	ft limit for wind design	: 1 / 500 stor	y heigh	t				
		FTAO strap	: Continuous a	t top o	f highest open	ning and	bottom of lowest		

SITE INFORMATION

	Wind			Seismic				
ASCE 7-16 Direc	ctional (All h	eights)	ASCE 7-16 12.8	Equivalent Lateral Forc	e Procedure			
Design Wind Speed	120 mph		Risk Category	Category II - All others				
Serviceability Wind Speed	100 mph		Structure Type	Irregular				
Exposure	Exposure (2	Building System	Bearing Wall				
Enclosure	Partially o	open	Design Category	D				
Min Wind Loads: Walls	16 psf		Site Class	D				
Roofs	8 psf		Spee	ctral Response Acceleration				
Topograpi	nic Information [ff]	S1: 0.700g	Ss: 1.8	370g			
Shape	Height	Length	Fundamental Period	E-W	N-S			
-	-	-	T Used	0.155s	0.155s			
Site Location: -			Approximate Ta	0.155s	0.155s			
Elev	<i>r</i> : 4800ft		Maximum T	0.217s	0.217s			
Rigid buildin	g – Static ana	alysis	Response Factor R	2.00	2.00			
Case 2	E-W loads	N-S loads	Fa: ¹ .20	Fv: 1.7	0			
Eccentricity (%)	15	15						
Loaded at	75%							

WoodWorks® Shearwalls

Genoa Church.wsw Jan. 30, 2023 11:48:20

Structural Data

STORY INFORMATION

				Hold-down			
	Story Elev [ft]	Floor/Ceiling Depth [in]	Wall Height [ft]	Length subject to shrinkage [in]	Bolt length [in]		
Ceiling	12.83	0.0					
Level 1	0.83	10.0	12.00	16.0	16.0		
Foundation	0.00						

BLOCK and ROOF INFORMATION

	Block		Roof Panels					
	Dimensions [ft]		Face	Туре	Slope	Overhang [ft]		
Block 1	1 Story	N-S Ridge						
Location X,Y =	0.00	0.00	North	Gable	90.0	1.00		
Extent X,Y =	20.00	40.00	South	Gable	90.0	1.00		
Ridge X Location, Offset	10.00	0.00	East	Side	33.7	1.00		
Ridge Elevation, Height	19.50	6.67	West	Side	33.7	1.00		
Block 2	1 Story	E-W Ridge						
Location X,Y =	20.00	26.25	North	Side	20.0	1.00		
Extent X,Y =	13.25	24.75	South	Side	20.0	1.00		
Ridge Y Location, Offset	38.63	0.00	East	Gable	90.0	1.00		
Ridge Elevation, Height	17.34	4.50	West	Gable	90.0	0.00		
Block 3	1 Story	E-W Ridge						
Location X,Y =	4.00	40.25	North	Side	20.0	1.00		
Extent X,Y =	16.00	10.75	South	Side	20.0	0.00		
Ridge Y Location, Offset	45.63	0.00	East	Joined	90.0	0.00		
Ridge Elevation, Height	14.79	1.96	West	Gable	90.0	1.00		

SHEATHING MATERIALS by WALL GROUP

1		-	Sheathing								Fasteners				
Grp	Surf	Material	Ratng	Thick	GU	Ply	Or	Gvtv	Size	Туре	RS	Eg	Fd	Bk	Notes
				in	in			lbs/in				in	in		
1	Both	Lumber siding		3/4	-	-	Horz	25000	8d	Common	Ν	3	2	Ν	4,8
2	Ext	Structural sheath	24/0	5/16	-	3	Horz	25000	6d	Common	Ν	3	2	Ν	1
	Int	GSB 4x8		1/2	-	-	Horz	40000	11 ga	Galv	Ν	7	7	Ν	
3	Both	Lumber siding		3/4	-	-	Horz	25000	8d	Common	Ν	3	2	Ν	4,8

Legend:

Grp – Wall Design Group number, used to reference wall in other tables (created by program)

Surf - Exterior or interior surface when applied to exterior wall

Ratng – Span rating, see SDPWS Table C4.2.3C

Thick – Nominal panel thickness

GU - Gypsum underlay thickness

Ply - Number of plies (or layers) in construction of plywood sheets

Or – Orientation of longer dimension of sheathing panels or lumber planks. Dbl. = Double diagonal.

Gvtv – Shear stiffness in Ib/in. of depth from SDPWS Tables C4.2.3A-B

Type – Fastener type from SDPWS Tables 4.3A-D:

Common: common wire nail; Box: galvanized box nail; Casing: casing nail; Roof: galvanized roofing nail; Cooler: cooler nail; WBoard: wallboard nail; Screw: drywall screw; Gauge: nail measured by gauge; Galv: galvanized gauge nail; GWB: Gypsum wallboard blued nail

Size - From Tables 4.3A-D and Table A1; shown in Wall Input fastener dropdown

Common nails: $6d = 0.113 \times 2^{"}$, $8d = 0.131 \times 2.5^{"}$, $10d = 0.148 \times 3^{"}$, $12d = 0.148 \times 3.5^{"}$

Box or casing nails: $6d = 0.099 \times 2^{"}$, $8d = 0.113 \times 2.5^{"}$, $10d = 0.128 \times 3^{"}$, $12d = 0.126 \times 3.5^{"}$ Gauge, roofing and GWB nails: $13 \text{ ga} = 0.92^{"} \times 1-1/8^{"}$; $11 \text{ ga} = 0.120^{"} \times 1-1/8^{"}$ (GWB nail for gypsum lath & plaster), $1-1/4^{"}$ (gyp. L&P), $1-1/2^{"}$ (wire lath & plaster, $1/2^{"}$ fiberboard, $1/2^{"}$ GWB), $1-3/4^{"}$ (GSB, $5/8^{"}$ GWB, $25/32^{"}$ fiberboard, 2-ply GWB base), $2-3/8^{"}$ (2-ply GWB face)

Cooler or wallboard nail: $5d = .086" \times 1-5/8"$; $6d = .092" \times 1-7/8"$; $8d = .113" \times 2-3/8"$; 6/8d = 6d base ply, 8d face ply for 2-ply GWB.

Drywall screws: No. 6, 1-1/4" long.

RS – Ring-shank nails (non-shearwalls only), with increased withdrawal capacity as per NDS 12.2.3.2.

Eg – Panel edge fastener spacing. For lumber sheathing, no. of nails per board at shear wall boundary. For 2-ply GWB, spacing of all nails in face ply.

Fd – Field spacing interior to panels. For lumber sheathing, no. of nails per board at interior studs. For 2-ply GWB, spacing of all nails in face ply. Bk – Sheathing is nailed to blocking at all panel edges; Y(es) or N(o)

Apply Notes - Notes below table legend which apply to sheathing side

Notes:

1.Capacity has been reduced for framing specific gravity according to SDPWS Table 4.3A Note 3. A factor of 0.93 is applied for Hem.-Fir framing and 0.92 for S.-P.-F. For other materials with specific gravity G less than 0.5, it is G + 0.5.

4. This material does not contribute to seismic shear resistance as it is not allowed in Seismic Design Category D according to SDPWS 4.3.7.9 for horizontal lumber sheathing.

8. Nails per board is for 1x6 and smaller boards.

FRAMING MATERIALS and STANDARD WALL by WALL GROUP

Wall	Species	Grade	b	d	Spcg	SG	E	Fcp	Standard Wall
Grp			in	in	in		psi^6		
1	S-P-F	Stud	1.50	5.50	16	0.42	1.20	425	
2	S-P-F	Stud	1.50	5.50	16	0.42	1.20	425	
3	S-P-F	Stud	1.50	5.50	16	0.42	1.20	425	

Legend:

Wall Grp – Wall Design Group

b - Stud breadth (thickness)

d – Stud depth (width)

Spcg - Maximum on-centre spacing of studs for design, actual spacing may be less.

SG – Specific gravity

E – Modulus of elasticity

Standard Wall - Standard wall designed as group.

Fcp - Compressive strength perpendicular to grain

Notes:

Check manufacture requirements for stud size, grade and specific gravity (G) for all shearwall hold-downs.

The following factors are applied to Fcp for compressive design and deformation under wall segment end studs :

Bearing area factor Cb from NDS 3.10.4, under window openings.

WoodWorks® Shearwalls

Genoa Church.wsw Jan. 30, 2023 11:48:20

SHEARLINE, WALL and OPENING DIMENSIONS

North-south	Туре	Wall	Location	Exten	nt [ft]	Length	FHS	Aspect	Height	Stı	ıds
Shearlines		Group	X [ft]	Start	End	[ft]	[ft]	Ratio	[ft]	S	Ν
Line 1											
Level 1											
Line 1		3	0.00	0.00	40.25	40.25	31.25	-	12.00	-	-
Wall 1-1	Seg	3	0.00	0.00	40.25	40.25	31.25	-	-	2	2
Segment 1		-	-	0.00	8.50	8.50	8.25	1.41	-	2	2
Opening 1		-	-	8.50	11.50	3.00	-	-	6.00	2	2
Segment 2		-	-	11.50	18.50	7.00	6.75	1.71		2	2
Opening 2		-	-	18.50	21.50	3.00	- 6 75	- 1 7 1	6.00	2	⊿ 2
Opening 3		_	_	21.50	20.50	7.00	0.75	1./1	- 6 00	2	⊿ 2
Segment 4		_	_	31 50	40 25	8 75	8 50	1 37	0.00	2	2
				51.50	40.25	0.75	0.50	1.57		2	4
	500	2	4 00	0 00	F1 00	F1 00	10 50		12 00		
Wall 2-1	Seg	2	4.00	40.25	51.00	10 75	10.50	1 1 2	12.00	2	2
line 3	568	2	1.00	10.25	51.00	10.75	10.50	1.12		2	4
Line 3		3 1	20 00	0 00	51 00	51 00	25 50	_	12 00	_	_
Wall 3-1	Sea	3,1	20.00	0.00	26 25	26 25	15 50	_	12.00	2	2
Segment 1	beg	_	-	0.00	8.50	8.50	8.25	1.41	-	2	2
Opening 1		-	-	8.50	11.50	3.00	-	_	6.00	2	2
Segment 2		-	-	11.50	18.50	7.00	6.75	1.71	_	2	2
Opening 2		-	-	18.50	21.50	3.00	_	_	6.00	2	2
Segment 3		-	-	21.50	26.25	4.75	4.50	2.53	_	2	2
Wall 3-2	Seq	1	20.00	26.25	40.25	14.00	10.00	-	-	2	2
Segment 1	2	-	-	26.25	27.25	1.00	0.75	12.00	-	2	2
Opening 1		-	-	27.25	30.25	3.00	-	-	6.67	2	2
Segment 2		-	-	30.25	40.25	10.00	9.75	1.20	-	2	2
Line 4											
Level 1											
Line 4	Seg	2	33.25	26.25	51.00	24.75	24.50	-	12.00	-	-
Wall 4-1	Seg	2	33.25	26.25	51.00	24.75	24.50	0.48	-	2	2
East-west	Туре	Wall	Location	Exten	it [ft]	Length	FHS	Aspect	Height	Stu	ıds
Shearlines		Group	Y [ft]	Start	End	[ft]	[ft]	Ratio	[ft]	W	Е
Line A											
Level 1											
Line A		1	0.00	0.00	20.00	20.00	14.00	-	12.00	-	-
Wall A-1	Seg	1	0.00	0.00	20.00	20.00	14.00	-	-	2	2
Segment 1		-	-	0.00	7.00	7.00	6.75	1.71	-	2	2
Opening 1		-	-	7.00	13.00	6.00	-	-	6.67	2	2
Segment 2		-	-	13.00	20.00	7.00	6.75	1.71	-	2	2
Line B											
Level 1											
Line B		2	26.25	0.00	33.25	33.25	0.00	-	12.00	-	-
Wall B-1	Seg	2	26.25	20.00	33.25	13.25	0.00	-	-	2	2
Segment 1		-	-	20.00	25.00	5.00	4.75	2.40	-	2	2
Opening 1		-	-	25.00	28.00	3.00	-	-	6.67	2	2
Segment 2		-	-	28.00	33.25	5.25	5.00	2.29	-	2	2
Line C											
Level 1											
Line C		3	40.25	0.00	33.25	33.25	16.00	-	12.00	-	-
Wall C-1	Seg	3	40.25	0.00	4.00	4.00	3.75	3.00	-	2	2
Wall C-2	Seg	3	40.25	4.00	20.00	16.00	15.75	0.75	-	2	2
Line D	- 5										
Level 1											
Line D	Sea	2	51.00	4.00	33.25	29.25	29.00	_	12.00	_	_
Wall D-1	Sea	2	51.00	4.00	33.25	29.25	29.00	0.41		2	2
	200	-								-	-

Legend:

Type – Seg = Segmented, Prf = Perforated, FT = FTAO (force transfer around openings), NSW = non-shearwall Location – Position in structure perpendicular to wall

Length - Shear line: Distance between exterior perpendicular walls defining the shear line extent

Wall, segment, or opening: End-to-end length of the element

FHS – Depending on element, shows different definitions of full-height sheathing length (FHS):

Shear lines with multiple walls, segmented walls, or FTAO walls: Total shear-resisting FHS

Individual wall segments or walls without openings: Distance between hold-downs beff

Perforated walls: Sum of factored segment lengths bi defined in SDPWS 4.3.5.6

Aspect Ratio – Ratio of wall height to segment length (h/b); for FTAO walls, the aspect ratio of the central pier

Wall Group – Wall design group defined in Sheathing and Framing Materials tables, where it shows associated Standard Wall

Jan. 30, 2023 13:05:57

DB23-0477

and Shearline Input ? Edit standard walls Design in group Relative rigidity per unit length Shearline 10.61 (Wind design) Auto Start X End X Height 0 20 12 1. level 1 Patterner Type Common wire nails Size 8d (0.131" x 2.1/2" v No. of edge nails 3 Image: Size in mode Image: Size in mo			
Edit standard walls Design in group Relative rigidity per unit length Shearline 10.61 (Wind design) Auto Start × End × Height 0 20 12 1, level 1 Both sides the same Fastener Type Common wire nails No. of edge nails No. of field nails No. of field nails Image: Stand studes: Left Thickness b Width d 1 End stude: Left Start standard Left Price Right HTT4 (18-10d x 1.5) Image: Start standard Plf Apply to shear line end	l and Shearline Inpu	t ?	×
Consistent data wais Design in group Relative rigidity per unit length Shearline 10.61 (Wind design) Auto Start X End X Design in group Start X End X Height 0 20 12 1, level 1 Patterner Image: Start Part of the same Fastener Type Common wire nails Image: Start Part of the same Size Both sides the same Size Blocking No. of edge nails No. of field nails 2 Image: Stud spacing 16 Image: Stud space space Image: Stud space Image: Stud space space Image: Stud space Image: Stud space space Image: Stud space		E dit standard wells	
Pesign in group Relative rigidity per unit length Shearline 10.61 (Wind design) Auto Start × End × Height 0 20 12 1, level 1 Both sides the same in Pastener Type Common wire nails 0 OSB Size 0 OSB Size 0 OSB No. of edge nails 0 No. of field nails 2 in Thickness b Width d 1 2 nom 6 in nom Stud spacing 16 in Stud spacing 16 in Stud spacing 16 in 0 Double-bracket gs Edit database 91 Apply to shear line esigned		E dit standard walls	
Relative rigidity per unit length Shearline 10.61 (Wind design) Auto Start X End X 12 12 1. level 1 Both sides the same Fastener Type Common wire nails Fastener Type Image: Size Blocking Image: Size Blocking No. of edge nails Image: Size Image: Size </td <td>L</td> <td>Design in group</td> <td></td>	L	Design in group	
I0.61 (Wind design) Auto Start X End X Height 0 0 20 12 12 1. level 1 Both sides the same Fastener Fastener ye Common wire nails Y Ring shank nails OSB Size Blocking No. of edge nails No. of field nails 2 in 1 Thickness b Width d 1 2 in 6 Ye in 6 in 2 Blocking No. of field nails 1 7 Plice in Stud spacing 16 in End studs: Left S Right HTT4 (18-10d x 1.5) Double-bracket 98 Edit database Hold-down settings	Relative rigidity pr	er unit length Shearline	
Start × End × Height 0 20 12 1, level 1 I, level 1	 10.61 (Wind de 	sign) 🛛 🗸 🗸 🗸 Auto	
0 20 12 1, level 1 Ø Both sides the same Fastener Type Image: State of the same Image: Stud spacing 1 Image: Stud spacing 16 Image: Stud spacing Image: Stud space Stud spac	Start X E	nd X Height	
1, level 1		20 12	
✓ Both sides the same iding ✓ in OSB OSB Blocking Image: Size Blocking No. of edge nails Image: Size No. of field nails Image: Size Image: Size </td <td>1, level 1</td> <td></td> <td></td>	1, level 1		
iding ✓ in Type OSB Size Blocking Size No. of edge nails 3 No. of field nails 2 in Thickness b Width d 2 2 in Mo. of field nails 2 in 6 Y in Blocking 16 Mo. of field nails 2 No. of field nails 2 Mo. of field nails 2 No. of field nails 2 Mo. of field nails 2	🗹 Both	sides the same	
Image Type Common wire nails Image Ring shank nails Image Size 8d (0.131" x 2·1/2" ∨ Image Size 8d (0.131" x 2·1/2" ∨ Image Blocking No. of edge nails 3 Image No. of edge nails 3 ∨ Image No. of field nails 2 ∨ Image Thickness b Width d 2 ∨ Image Thickness b Width d 1 1 Image End studs: Left 2 Right 1 Image Edit database Hold-down settings 1 1 Image Image Image Image 1 1 Image Edit database		Fastener	
✓ in Ring shank nails OSB Size Blocking No. of edge nails Image: No. of field nails Image: No. of field nails Image: No. of field nails<	iding ~	Type Common wire nails 🗸	
OSB Size 8d (0.131" × 2·1/2" ∨ Blocking No. of edge nails 3 ∨ I No. of field nails 2 ∨ in Stud spacing 16 ∨ Stud spacing 16 ∨ in End studs: Left 2 Right Double-bracket 0 0 0 gs Edit database Hold-down settings plf Apply to shear line esigned	in	Ring shank nails	
 Blocking No. of edge nails 3 No. of field nails 2 No. of field nails 2 In Thickness b Width d 2 in 6 in 6 in 6 in 6 in in Stud spacing 16 in End studs: Left 2 Right Art (18-10d x 1.5) Double-bracket gs Edit database Hold-down settings 	OSB	Size 8d (0.131" x 2-1/2" 🗸	
Image: Second state Image: Second state <tr< td=""><td>- Blocking</td><td>No. of edge nails 3 \sim</td><td></td></tr<>	- Blocking	No. of edge nails 3 \sim	
in Thickness b Width d Thickness b Width d 2 in 6 in nom Stud spacing 16 in End studs: Left 2 Right 2 v Walls Thickness b Width d 2 in End studs: Left 2 Right 2 v Understanding Big Apply to shear line esigned	al 🗸	No. of field nails 2	
Thickness b Width d Thickness b Width d 2 v in 6 in nom Stud spacing 16 in End studs: Left 2 Right 2 v walls 5) Right HTT4 (18-10d x 1.5) v Double-bracket gs Edit database Hold-down settings plf Apply to shear line esigned	- in		
Image: Second structure Thickness b Width d 2 in 6 in Stud spacing 16 in Stud spacing 16 in End studs: Left 2 Right Stud spacing 16 in Image: Second study: Left 2 Right Stud spacing 16 Image: Second study: 1.5 Stud spacing HTT4 (18-10d x 1.5) Image: Second study: Image: Second study: gs Edit database Hold-down settings plf Apply to shear line esigned			
d v 2 v in 6 v in nom Stud spacing 16 v in End studs: Left 2 v Right 2 v walls 5) V Right HTT4 (18-10d × 1.5) v Double-bracket gs Edit database Hold-down settings plf Apply to shear line esigned	Thicknes	ss b Width d	
 Stud spacing 16 in End studs: Left 2 Right 2 walls Bight HTT4 (18-10d x 1.5) Bouble-bracket Double-bracket gs Edit database Hold-down settings plf Apply to shear line 	2	→ in <u>6</u> → in nom	
 End studs: Left 2 Right HTT4 (18-10d x 1.5) Bouble-bracket Double-bracket Edit database Hold-down settings plf Apply to shear line 	Stud space	cing 16 ∨ in	
walls 5) Right HTT4 (18-10d x 1.5) Double-bracket gs Edit database Hold-down settings plf Apply to shear line esigned	End studs	: Left 2 V Right 2 V	
walls 5) Right HTT4 (18-10d x 1.5) Double-bracket gs Edit database Hold-down settings plf Apply to shear line esigned			
5) V Hight HTT4 (18-10d x 1.5) V Double-bracket 9 ^s Edit database Hold-down settings plf Apply to shear line esigned	walls		
□ Double-bracket gs Edit database plf ☑ Apply to shear line esigned	.5) ~ Right end	^{nt} HTT4 (18-10d x 1.5) ~	
gs Edit database Hold-down settings plf ☑ Apply to shear line esigned	:	Double-bracket	
plf Apply to shear line	igs Edit data	abase Hold-down settings	
plf 🗹 Apply to shear line esigned			
esigned	plf 🗹 🗸	Apply to shear line	
	esigned		

Jan. 30, 2023 13:05:57

North

Jan. 30, 2023 13:05:57

North

All shearwalls, Design group 0: Exterior surface: 3/4" horizontal lumber w/ 8d common nails @ 3 or 2 per board Interior surface:

3/4" horizontal lumber w/ 8d common nails @ 3 or 2 per board Frame: S-P-F @ 16", unblocked

Jan. 30, 2023 11:11:57

All shearwalls, Design group 1: Exterior surface: 3/4" horizontal lumber w/ 8d common nails @ 3 or 2 per board Shear capacity: 70.0 plf C&C sheath. load: 17.7 / 21.8 psf; cap. 123.1 psf Nail withdr. load 4.9 lbs; cap. 0.0 Interior surface: 3/4" horizontal lumber w/ 8d common nails @ 3 or 2 per board Shear capacity: 70.0 plf Frame: S-P-F @ 16", unblocked Critical Segment: A-1,1: Design shear force: 237.9 plf Combined capacity (added): 140.0 plf

DB23-0477

Jan. 30, 2023 13:05:57

ANALYSIS AND DESIGN OF **EXISTING STRUCTURE IS NOT** PART OF THE SCOPE OF WORK. INTENT OF MODEL IS TO DERIVE VERTICAL ANCHOR LOADS FROM WIND AND SEISMIC.

FAILURE NOTE IS FOR THE SHEAR CAPACITY OF THE EXISTING WALL.

UPLIFT FORCE INCLUDE STRAP AT CORNERS, BOTH SIDES

Jan. 30, 2023 11:11:57

Jan. 30, 2023 11:11:57

North

Jan. 30, 2023 13:05:57